VISG Polyploids Project Rod Ball & Phillip Wilcox Scion; Sammie Yilin Jia Plant and Food Research Gail Timmerman-Vaughan Plant and Food Research Nihal.

Slides:



Advertisements
Similar presentations
15 The Genetic Basis of Complex Inheritance
Advertisements

Planning breeding programs for impact
Qualitative and Quantitative traits
Genetic research designs in the real world Vishwajit L Nimgaonkar MD, PhD University of Pittsburgh
METHODS FOR HAPLOTYPE RECONSTRUCTION
Tutorial #2 by Ma’ayan Fishelson. Crossing Over Sometimes in meiosis, homologous chromosomes exchange parts in a process called crossing-over. New combinations.
Discovery of a rare arboreal forest-dwelling flying reptile (Pterosauria, Pterodactyloidea) from China Wang et al. PNAS Feb. 11, 2008.
Basics of Linkage Analysis
. Parametric and Non-Parametric analysis of complex diseases Lecture #6 Based on: Chapter 25 & 26 in Terwilliger and Ott’s Handbook of Human Genetic Linkage.
Linkage Analysis: An Introduction Pak Sham Twin Workshop 2001.
Association Mapping David Evans. Outline Definitions / Terminology What is (genetic) association? How do we test for association? When to use association.
QTL Mapping R. M. Sundaram.
MALD Mapping by Admixture Linkage Disequilibrium.
The Inheritance of Complex Traits
1 QTL mapping in mice Lecture 10, Statistics 246 February 24, 2004.
Statistical association of genotype and phenotype.
Sessão Temática 2 Análise Bayesiana Utilizando a abordagem Bayesiana no mapeamento de QTL´s Roseli Aparecida Leandro ESALQ/USP 11 o SEAGRO / 50ª RBRAS.
Quantitative Genetics
2050 VLSB. Dad phase unknown A1 A2 0.5 (total # meioses) Odds = 1/2[(1-r) n r k ]+ 1/2[(1-r) n r k ]odds ratio What single r value best explains the data?
Chuanyu Sun Paul VanRaden National Association of Animal breeders, USA Animal Improvement Programs Laboratory, USA Increasing long term response by selecting.
Linkage and LOD score Egmond, 2006 Manuel AR Ferreira Massachusetts General Hospital Harvard Medical School Boston.
Lecture 5: Segregation Analysis I Date: 9/10/02  Counting number of genotypes, mating types  Segregation analysis: dominant, codominant, estimating segregation.
Module 7: Estimating Genetic Variances – Why estimate genetic variances? – Single factor mating designs PBG 650 Advanced Plant Breeding.
QTL mapping in animals. It works QTL mapping in animals It works It’s cheap.
Genetic Mapping Oregon Wolfe Barley Map (Szucs et al., The Plant Genome 2, )
Non-Mendelian Genetics
Class 3 1. Construction of genetic maps 2. Single marker QTL analysis 3. QTL cartographer.
Bayesian MCMC QTL mapping in outbred mice Andrew Morris, Binnaz Yalcin, Jan Fullerton, Angela Meesaq, Rob Deacon, Nick Rawlins and Jonathan Flint Wellcome.
National Taiwan University Department of Computer Science and Information Engineering Pattern Identification in a Haplotype Block * Kun-Mao Chao Department.
Lecture 19: Association Studies II Date: 10/29/02  Finish case-control  TDT  Relative Risk.
Experimental Design and Data Structure Supplement to Lecture 8 Fall
Quantitative Genetics. Continuous phenotypic variation within populations- not discrete characters Phenotypic variation due to both genetic and environmental.
Complex Traits Most neurobehavioral traits are complex Multifactorial
Quantitative Genetics
INTRODUCTION TO ASSOCIATION MAPPING
Regression-Based Linkage Analysis of General Pedigrees Pak Sham, Shaun Purcell, Stacey Cherny, Gonçalo Abecasis.
Discovery of a rare arboreal forest-dwelling flying reptile (Pterosauria, Pterodactyloidea) from China Wang et al. PNAS Feb. 11, 2008.
Lecture 13: Linkage Analysis VI Date: 10/08/02  Complex models  Pedigrees  Elston-Stewart Algorithm  Lander-Green Algorithm.
Lecture 15: Linkage Analysis VII
1 B-b B-B B-b b-b Lecture 2 - Segregation Analysis 1/15/04 Biomath 207B / Biostat 237 / HG 207B.
Lecture 3: Statistics Review I Date: 9/3/02  Distributions  Likelihood  Hypothesis tests.
FINE SCALE MAPPING ANDREW MORRIS Wellcome Trust Centre for Human Genetics March 7, 2003.
Lecture 24: Quantitative Traits IV Date: 11/14/02  Sources of genetic variation additive dominance epistatic.
A Statistical Method for Adjusting Covariates in Linkage Analysis With Sib Pairs Colin O. Wu, Gang Zheng, JingPing Lin, Eric Leifer and Dean Follmann Office.
QTL Cartographer A Program Package for finding Quantitative Trait Loci C. J. Basten Z.-B. Zeng and B. S. Weir.
Association between genotype and phenotype
BayesNCSU QTL II: Yandell © Bayesian Interval Mapping 1.what is Bayes? Bayes theorem? Bayesian QTL mapping Markov chain sampling18-25.
Epistasis / Multi-locus Modelling Shaun Purcell, Pak Sham SGDP, IoP, London, UK.
Practical With Merlin Gonçalo Abecasis. MERLIN Website Reference FAQ Source.
Lecture 22: Quantitative Traits II
Lecture 23: Quantitative Traits III Date: 11/12/02  Single locus backcross regression  Single locus backcross likelihood  F2 – regression, likelihood,
Powerful Regression-based Quantitative Trait Linkage Analysis of General Pedigrees Pak Sham, Shaun Purcell, Stacey Cherny, Gonçalo Abecasis.
The New Zealand Institute for Plant & Food Research Limited VISG polyploids project – Datasets.
Types of genome maps Physical – based on bp Genetic/ linkage – based on recombination from Thomas Hunt Morgan's 1916 ''A Critique of the Theory of Evolution'',
Efficient calculation of empirical p- values for genome wide linkage through weighted mixtures Sarah E Medland, Eric J Schmitt, Bradley T Webb, Po-Hsiu.
QTL Mapping Using Mx Michael C Neale Virginia Institute for Psychiatric and Behavioral Genetics Virginia Commonwealth University.
Genetic mapping and QTL analysis - JoinMap and QTLNetwork -
Association Mapping in Families Gonçalo Abecasis University of Oxford.
Lecture 17: Model-Free Linkage Analysis Date: 10/17/02  IBD and IBS  IBD and linkage  Fully Informative Sib Pair Analysis  Sib Pair Analysis with Missing.
I. Statistical Methods for Genome-Enabled Prediction of Complex Traits OUTLINE THE CHALLENGES OF PREDICTING COMPLEX TRAITS ORDINARY LEAST SQUARES (OLS)
Bayesian Variable Selection in Semiparametric Regression Modeling with Applications to Genetic Mappping Fei Zou Department of Biostatistics University.
Regression Models for Linkage: Merlin Regress
Constrained Hidden Markov Models for Population-based Haplotyping
upstream vs. ORF binding and gene expression?
Genome Wide Association Studies using SNP
Gene mapping in mice Karl W Broman Department of Biostatistics
Mapping Quantitative Trait Loci
Basic concepts on population genetics
Lecture 9: QTL Mapping II: Outbred Populations
The Basic Genetic Model
Presentation transcript:

VISG Polyploids Project Rod Ball & Phillip Wilcox Scion; Sammie Yilin Jia Plant and Food Research Gail Timmerman-Vaughan Plant and Food Research Nihal DeSilva Plant and Food Research

Abstract A number of important horticultural, crop, and forage species are polyploids. Existing QTL mapping in polyploids is limited to specific marker types and segregation patterns, and inference is limited. The VISG polyploids project is developing methods for QTL mapping in polyploids which make full use of available marker information and enable multi-locus Bayesian inference of the genetic architecture. We review progress and outline the modelling approach and future plans for development. For QTL mapping in diploid plants, with moderate to large full sib-families, it is usually possible to infer the segregation pattern and linkage phase for each marker. Markers are typically fully informative for one or both parents. However, polyploids have 2 or more sub-genomes resulting in (e.g. for an allo-tetraploid) 4 or more alleles at each locus each of which could have been inherited from one of 8 grand- parental chromosomes. Markers are rarely fully informative. Moreover, the number of copies of each allele is not observed with current marker technology, and it is necessary to distinguish marker genotypes from marker phenotypes. For example for a marker with dominant allele M: genotypes Mmmm, MMmm, MMMm, MMMM and permutations have the same phenotype.

Abstract (ctd.) The statistical method needs to contend with considerable and variable amounts of missing information. Previous methods consider possible segregation patterns for special cases of certain types of flanking markers, and give a LOD score for putative QTL. However this is ad hoc and flanking markers may not be fully informative, or even informative at a given locus on a given sub-genome. We are developing a general method based on peeling, for sampling from the joint distribution of a set of fully informative virtual markers. Peeling and conditional peeling have been implemented for allo-polyploids, and initial testing started on one diploid wheat dataset. This year we will be integrating the peeling method with the BIC method for QTL mapping (Ball, Genetics 2001; utilising multiple imputation of missing information) and/or reversible jump MCMC sampling, extending Bayesian multi-locus inference of the genetic architecture to polyploids.

Polyploids - goals Extend Bayesian multilocus QTL mapping methods to allo- polyploids. QTL mapping—marker trait association in families or pedigrees. Allo-polyploids, multiple sub-genomes retaining their identity e.g. AABB, AABBCC. In diploid plant families can generally infer segregation pattern and linkage phase. In polyploids have up to e.g. 8 alleles in allo-tetraploids that could have been inherited at a given locus.  missing information. Previously, interval mapping applied on an ad hoc basis to pairs of markers, in certain cases.

Polyploids – example 1 Example 1. Marker on a polyploid chromosome. A M A m B m Marker phenotype: M.

Polyploids – Example 2 Example 2. Counter-example: correlation does not imply causation (linkage). Example marker on a polyploid chromosome. A M M m A m m m B m M M B m m m M1 correlated with M2 on sub-genome A, M2 correlated with M3 on sub-genome B. Spurious linkage induced between M1 and M3.

Polyploids – Example 2 Another possible model representing the same data. A M M M A m m m B m m m Same expected correlation between M1 and M2, and between M2 and M3, but further apparent distance. M3 on the wrong subgenome.

Polyploids QTL mapping previous work Mostly ad hoc specific cases, probability calculations for specific marker types. Consider only single markers (e.g. Doerge and Craig 2000) or pairs of markers (e.g. Cao et al 2005). Single locus i.e. test for a single QTL versus no QTL separately at each locus (e.g. Cao et al extend interval mapping).  Lack the benefits of Bayesian multilocus approach. Flanking markers may not be informative

VISG Polyploids Modelling Bayesian model selection approach BIC method and/or RJMCMC Multiple imputation to handle missing information. Peeling and conditional peeling along chromosomes to sample from the missing information.

BIC method (Ball; Genetics 2001) A Bayesian model selection method A non-MCMC, multi-locus QTL mapping method Considers multiple models representing alternate QTL genetic architectures according to their probabilities QTL architectures represented to within the resolution of the marker map by linear regression on subset of selected markers.

BIC method Avoids selection bias (Miller 1990, Beavis 1994) where the same data is used to select loci, and estimate the size of their effects, due to over- estimated effects being more likely to be selected. Missing values estimated by multiple imputation.

BIC method example:

Bayesian Model selection/BIC method Note inference of genetic architecture (to within the resolution of the marker map): posterior probability for number of QTL in a region posterior probability for QTL in the vicinity of a marker unbiased estimates of QTL e ff ects avoid selection bias by considering all models, not just models where the effect is selected or ‘significant’ (unlike e.g., interval mapping).

Multiple imputation Jointly analyse multiple copies of the data with independent randomly sampled values for the missing data adjusting the likelihood appropriately Need to sample from the distribution of missing marker information Will sample from a set of fully informative ‘virtual markers’ using a variant of ‘peeling’.

Peeling (Elston and Stewart 1971) Missing information problem for diploid human pedigrees be- cause of small family size. Peeling—exhaustively evaluates joint or marginal probabilities in a pedigree. Feasible for several markers simultaneously. A special case of graphical models methods (e.g. Lauritzen and Spiegelhalter 1988; Thomas et al 2000).

Peeling Process: Summation over progeny in parent progeny triples. Remove the progeny from the graph. (It is peeled away). Repeat for all progeny. - End result is a function on remaining node or a value (likelihood) for the model in terms of any parameters θ that are conditioned on in the above process. - Reverse the steps (reverse peeling) obtaining a random sample from the distribution.

VISG peeling Peeling to sample from the virtual marker genotypes at one locus. Conditional peeling. Peel sequentially along the genome, conditional on previously sampled values and recombination rates. complexities (not yet being addressed) – recombination rates may vary between parents (male or female) and sub-genomes – recombination distances between markers may also need to be estimated. – recombination rates not known ⇒ need pairwise peelings

Hierarchical model for allo-tetraploids

Peeling equations for an allo-tetraploid

Peeling equations for an allo-tetraploid (ctd.) Continue, peel back to marginal distribution [mp1], and sample from that distribution. Reverse the process sampling from each value in turn.

Progress Three year project work plan written and accepted by the Project Governance Group. Peeling equations derived. R functions for peeling and conditional peeling implemented by Sammie. Testing peeling.

Next steps Integrating peeling with the BIC method. Testing and application to more datasets.

References Ball, R.D. 2001: Bayesian methods for quantitative trait loci mapping based on model selection: approximate analysis using the Bayesian Information Criterion. Genetics 159: 1351–1364. Beavis, W.D., 1994: The power and deceit of QTL experiments: lessons from comparative QTL studies. Proc 49 th Ann. Corn and Sorghum Indus. Res. Conf. Cao, D., Craig, B. A., and Doerge, R.W. 2005: A model selection based interval mapping method for autopolyploids. Genetics 169: 2371–2382. Note: the model selection referred to here is for the parental segregation pattern for a pair of loci, extending interval mapping.

References (ctd.) De Silva, H. N. and Ball, R.D. 2007: “Linkage disequilibrium mapping concepts”, Chapter 7, In: Association mapping in plants. N. C. Oraguzie et al. editors, Springer Verlag, ISBN (31pp) Doerge, R.W. and Craig, B. A. 2000: Model selection for quantitative trait locus analysis in polyploids. PNAS 14: 7951–7956. Note: the model selection referred to here is for the parental segregation pattern for a single locus. Elston R.C. and Stewart J. 1971: A general model for the genetic analysis of pedigree data. Human Heredity 21: 523–542. Miller, A.J. 1990: Subset selection in regression, Monographs on Statistics and Applied Probability 40, Chapman and Hall, London. Thomas, A., Gutin, A., Abkevich, V., and Bansal, A. 2000: Multilocus linkage analysis by blocked Gibbs sampling. Statistics and Computing 10: 259–269.