Knowledge Representation and Reasoning University "Politehnica" of Bucharest Department of Computer Science Fall 2010 Adina Magda Florea

Slides:



Advertisements
Similar presentations
Resolution Proof System for First Order Logic
Advertisements

The Model Evolution Calculus with Built-in Theories Peter Baumgartner MPI Informatik, Saarbrücken
Artificial Intelligence Chapter 13 The Propositional Calculus Biointelligence Lab School of Computer Sci. & Eng. Seoul National University.
Biointelligence Lab School of Computer Sci. & Eng.
Standard Logical Equivalences
UIUC CS 497: Section EA Lecture #2 Reasoning in Artificial Intelligence Professor: Eyal Amir Spring Semester 2004.
Artificial Intelligence
First Order Logic Resolution
Inference and Reasoning. Basic Idea Given a set of statements, does a new statement logically follow from this. For example If an animal has wings and.
Intelligent Systems (AI-2) Computer Science cpsc422, Lecture 20
Logic.
CPSC 422, Lecture 21Slide 1 Intelligent Systems (AI-2) Computer Science cpsc422, Lecture 21 Mar, 4, 2015 Slide credit: some slides adapted from Stuart.
Logic Concepts Lecture Module 11.
Knowledge Representation and Reasoning University "Politehnica" of Bucharest Department of Computer Science Fall 2011 Adina Magda Florea
Artificial Intelligence University Politehnica of Bucharest Adina Magda Florea
1 Applied Computer Science II Resolution in FOL Luc De Raedt.
Outline Recap Knowledge Representation I Textbook: Chapters 6, 7, 9 and 10.
Computability and Complexity 9-1 Computability and Complexity Andrei Bulatov Logic Reminder (Cnt’d)
Formal Logic Proof Methods Direct Proof / Natural Deduction Conditional Proof (Implication Introduction) Reductio ad Absurdum Resolution Refutation.
Inference and Resolution for Problem Solving
Symbolic Logic Foundations: An Overview F03 CSD ProSem Selmer Bringsjord
Existential Graphs and Davis-Putnam April 3, 2002 Bram van Heuveln Department of Cognitive Science.
Knowledge Representation I (Propositional Logic) CSE 473.
Search in the semantic domain. Some definitions atomic formula: smallest formula possible (no sub- formulas) literal: atomic formula or negation of an.
Knoweldge Representation & Reasoning
Last time Proof-system search ( ` ) Interpretation search ( ² ) Quantifiers Equality Decision procedures Induction Cross-cutting aspectsMain search strategy.
Artificial Intelligence
03 -1 Lecture 03 First-Order Predicate Logic Topics –Syntax –Formal Semantics –Denotational Semantics –Formal Inference –Resolution.
Proof Systems KB |- Q iff there is a sequence of wffs D1,..., Dn such that Dn is Q and for each Di in the sequence: a) either Di is in KB or b) Di can.
SAT and SMT solvers Ayrat Khalimov (based on Georg Hofferek‘s slides) AKDV 2014.
CS 4100 Artificial Intelligence Prof. C. Hafner Class Notes Jan 19, 2012.
Conjunctive normal form: any formula of the predicate calculus can be transformed into a conjunctive normal form. Def. A formula is said to be in conjunctive.
Knowledge Representation Use of logic. Artificial agents need Knowledge and reasoning power Can combine GK with current percepts Build up KB incrementally.
1 Knowledge Representation. 2 Definitions Knowledge Base Knowledge Base A set of representations of facts about the world. A set of representations of.
ARTIFICIAL INTELLIGENCE [INTELLIGENT AGENTS PARADIGM] Professor Janis Grundspenkis Riga Technical University Faculty of Computer Science and Information.
CS344: Introduction to Artificial Intelligence Lecture: Herbrand’s Theorem Proving satisfiability of logic formulae using semantic trees (from Symbolic.
CS621: Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 28– Interpretation; Herbrand Interpertation 30 th Sept, 2010.
Unification Algorithm Input: a finite set Σ of simple expressions Output: a mgu for Σ (if Σ is unifiable) 1. Set k = 0 and  0 = . 2. If Σ  k is a singleton,
Kansas State University Department of Computing and Information Sciences CIS 730: Introduction to Artificial Intelligence Lecture 13 of 41 Monday, 20 September.
Computing & Information Sciences Kansas State University Lecture 13 of 42 CIS 530 / 730 Artificial Intelligence Lecture 13 of 42 William H. Hsu Department.
ARTIFICIAL INTELLIGENCE [INTELLIGENT AGENTS PARADIGM] Professor Janis Grundspenkis Riga Technical University Faculty of Computer Science and Information.
Kansas State University Department of Computing and Information Sciences CIS 730: Introduction to Artificial Intelligence Lecture 17 Wednesday, 01 October.
Kansas State University Department of Computing and Information Sciences CIS 730: Introduction to Artificial Intelligence Lecture 12 Friday, 17 September.
Computing & Information Sciences Kansas State University Lecture 14 of 42 CIS 530 / 730 Artificial Intelligence Lecture 14 of 42 William H. Hsu Department.
Automated Reasoning Early AI explored how to automated several reasoning tasks – these were solved by what we might call weak problem solving methods as.
Kansas State University Department of Computing and Information Sciences CIS 730: Introduction to Artificial Intelligence Lecture 23 Friday, 17 October.
CS6133 Software Specification and Verification
Kansas State University Department of Computing and Information Sciences CIS 730: Introduction to Artificial Intelligence Lecture 18 of 41 Friday, 01 October.
Artificial Intelligence 7. Making Deductive Inferences Course V231 Department of Computing Imperial College, London Jeremy Gow.
© Copyright 2008 STI INNSBRUCK Intelligent Systems Propositional Logic.
1 Knowledge Based Systems (CM0377) Lecture 6 (last modified 20th February 2002)
Knowledge Repn. & Reasoning Lec. #5: First-Order Logic UIUC CS 498: Section EA Professor: Eyal Amir Fall Semester 2004.
Computing & Information Sciences Kansas State University Lecture 12 of 42 CIS 530 / 730 Artificial Intelligence Lecture 12 of 42 William H. Hsu Department.
© Copyright 2008 STI INNSBRUCK Intelligent Systems Lecture II – xx 2009 Propositional Logic Dieter Fensel and.
1 Propositional Logic Limits The expressive power of propositional logic is limited. The assumption is that everything can be expressed by simple facts.
Instructor: Eyal Amir Grad TAs: Wen Pu, Yonatan Bisk Undergrad TAs: Sam Johnson, Nikhil Johri CS 440 / ECE 448 Introduction to Artificial Intelligence.
Logical Agents Chapter 7. Outline Knowledge-based agents Propositional (Boolean) logic Equivalence, validity, satisfiability Inference rules and theorem.
Knowledge Repn. & Reasoning Lecture #9: Propositional Logic UIUC CS 498: Section EA Professor: Eyal Amir Fall Semester 2005.
Computing & Information Sciences Kansas State University Wednesday, 04 Oct 2006CIS 490 / 730: Artificial Intelligence Lecture 17 of 42 Wednesday, 04 October.
Computing & Information Sciences Kansas State University Friday, 13 Oct 2006CIS 490 / 730: Artificial Intelligence Lecture 21 of 42 Friday, 13 October.
March 3, 2016Introduction to Artificial Intelligence Lecture 12: Knowledge Representation & Reasoning I 1 Back to “Serious” Topics… Knowledge Representation.
Artificial Intelligence Logical Agents Chapter 7.
Computing & Information Sciences Kansas State University Monday, 18 Sep 2006CIS 490 / 730: Artificial Intelligence Lecture 11 of 42 Monday, 18 September.
Logical Agents. Outline Knowledge-based agents Logic in general - models and entailment Propositional (Boolean) logic Equivalence, validity, satisfiability.
Knowledge Representation and Reasoning
The Propositional Calculus
Symbolic Logic Foundations: An Overview 1/22/01
CS 416 Artificial Intelligence
Back to “Serious” Topics…
Computer Security: Art and Science, 2nd Edition
Presentation transcript:

Knowledge Representation and Reasoning University "Politehnica" of Bucharest Department of Computer Science Fall 2010 Adina Magda Florea curs.cs.pub.ro Master of Science in Artificial Intelligence,

Lecture 2 & 3 Lecture outline  Logic based representations  Automated reasoning  Predicate logic  Herbrand theorem  Powerful inference rules

1. Logic based representations 2 possible aims to make the system function according to the logic to specify and validate the design  Conceptualization of the world / problem  Syntax - wffs  Semantics - significance, model  Model - the domain interpretation for which a formula is true  Model - linear or structured  M |= S  - "  is true or satisfied in component S of the structure M" Model theory  Generate new wffs that are necessarily true, given that the old wffs are true - entailmentKB |= L  Proof theory  Derive new wffs based on axioms and inference rules KB |- i  3

PrL, FOPL 4 Extend PrL, PL Sentential logic of beliefs Uses beliefs atoms B A (  ) Index PL with agents Modal logic Modal operators Logics of knowledge and belief Modal operators B and K Dynamic logic Modal operators for actions Temporal logic Modal operators for time Linear time Branching time CTL logic Branching time and action BDI logic Adds agents, B, D, I Linear model Structured models Situation calculus Adds states, actions Symbol level Knowledge level Description Logics Subsumption relationships

5 Higher order logic First order logic

2. Automated Reasoning 6

7

A logical puzzle Someone who lives in Dreadbury Mansion killed Aunt Agatha. Agatha, the butler, and Charles live in Dreadbury Mansion, and are the only people who live therein. A killer always hates his victim, and is never richer than his victim. Charles hates no one that Aunt Agatha hates. Agatha hates everyone except the butler. The butler hates everyone not richer than Aunt Agatha. The butler hates everyone Aunt Agatha hates. No one hates everyone. Agatha is not the butler. Who killed Aunt Agatha? 8

9

10

11

12

3. Predicate logic - syntax  variables  function symbols  terms  predicate symbols  atoms  Boolean connectives  quantifiers  The function symbols and predicate symbols, each of given arity, comprise a signature .  A ground term is a term without any variables 13

Predicate logic - semantics  Universe (aka Domain) : Set U  Variables – values in U  Function symbols – (total) functions over U  Predicate symbols – relations over U  Terms – values in U  Formulas – Boolean truth values  Interpretation of a formula 14

Algorithmic problems  Validity(F): |= F ? (is F true in every interpretation?)  Satisfiability (F): F satisfiable?  Entailment (F, G): F |= G? (does F entail G?)  Model(A,F): A |=F ?  Solve (A,F): find an assignment  such that A,  |=F  Solve (F): find a substitution  such that |=F   Abduce(F): find G with "certain properties: such that G |= F 15

Refutation Theorem Proving Suppose we want to prove H |= G.  Equivalently, we can prove that F := H → G is valid.  Equivalently, we can prove that ~F, i.e., H  ~G is unsatisfiable.  This principle of “refutation theorem proving” is the basis of almost all automated theorem proving methods. 16

Normal forms  Study of normal forms is motivated by: reduction of logical concepts efficient data structures for theorem proving.  The main problem in first-order logic is the treatment of quantifiers. The normal form transformations are intended to eliminate many of them. 17

Normal forms  Prenex normal form  CNF  Eliminate existential quantifiers and conjunctions => Normal form matrix prefix 18

Herbrand universe  Herbrand universe  Herbrand base  Ground instances of a clause (set of clauses) S is in H = 19

Examples 20

Herbrand interpretation  H-interpretation 21

Herbrand interpretation  H-interpretation I* correspinding to an interpretation I for a set of clauses S 22

Herbrand theorem  Lemma. If an interpretation I over a domain D satisfies the set of clauses S (i.e., the set S is satisfiable under that interpretation), then any H-interpretation I* corresponding to I also satisfies S  Theorem. A set of clauses S is inconsistent iff S is false for any H- interpretation of S 23

Semantic Trees  Semantic trees  Complete semantic trees Herbrand base of S is 24

Semantic Trees Herbrand base of S is  Complete semantic tree 25

Closed semantic trees 26

Closed semantic trees Failure nodes Inference nodes 27

Review of definitions  Basic instance of a clause C in S = an instance C' of a clause C from S obtained by replacing the variables it contains with elements of the Herbrand universe  Complete semantic tree (CST) = for any leaf of the tree, I(N) contains either Ai or ~Ai (i.e., any path from the root to a leaf contains all elements of the Herbrand base either in positive or negative form)  Failure node in a ST = I(N) falsifies a basic instance of a clause in S and I(N') does not falsify any instance of a clause in S, with N' the immediate predecesor of N  Closed semantic tree = any branch has (ends in) a failure nod  Inference node in a ST = all the node's successors are failure nodes 28

Herbrand's theorem  Idea: to test if a set S of clauses is unsatisfiable we have to test if S is unsatisfiable only for H-interpretations (interpretations over the Herbrand universe) First version of HT  A set of clauses S is unsatisfiable iff for any semantic tree of S there exists a finite closed semantic tree  (any complete semantic tree of S is a closed semantic tree) 29

Herbrand's theorem Second version of HT  A set of clauses S is unsatisfiable iff there exists a finite set S' of ground instances of S which is unsatisfiable  (the Herbrand base of S is unsatisfiable) 30

Powerful inference rules - Resolution Resolution  Binary resolution  Factorization  General resolution 31

Factorization – Russell's antinomy A barber shaves men if and only if they do not shave themselves. Should the barber shave himself or not? (A1) ~Shaves(x,x)  Shaves(barber,x) (A2) Shaves(barber,y)  ~Shaves (y,y) (C1) Shaves(x,x)  Shaves (barber,x) (C2) ~Shaves (barber,y)  ~Shaves (y,y) (Res1) ~Shaves (barber,x)  Shaves (barber,x) (Res2) Shaves(barber,barber)  ~Shaves (barber,barber) (FC1): Shaves (barber,barber) (FC2): ~Shaves (barber,barber) See also 32

Prover9 and Mace4  Prover9 is an automated theorem prover for first-order and equational logic  Mace4 searches for finite models and counterexamples  Prover9 is the successor of the Otter prover. 

Factorization – Russell's antinomy Prover 9 -Shaves(x,x) -> Shaves(barber,x). Shaves(barber,y) -> - Shaves (y,y). 1 -Shaves(x,x) -> Shaves(barber,x) # label(non_clause). [assumption]. 2 Shaves(barber,x) -> -Shaves(x,x) # label(non_clause). [assumption]. 3 Shaves(x,x) | Shaves(barber,x). [clausify(1)]. 4 -Shaves(barber,x) | -Shaves(x,x). [clausify(2)]. 5 Shaves(barber,barber). [factor(3,a,b)]. 6 $F. [factor(4,a,b),unit_del(a,5)]. 34

Resolution  Theorem. Resolution is sound. Thai is, all derived formulas are entailed by the given ones  Theorem: Resolution is refutationally complete.  That is, if a clause set is unsatisfiable, then Resolution will derive the empty clause eventually.  If a clause set is unsatisfiable and closed under the application of resolution inference rule then it contains the empty clause. 35

Completeness of Resolution complete semantic tree closed semantic tree inference node failure node 36

Completeness of Resolution closed semantic tree inference node failure node inference node 37

Completeness of Resolution  Lifting lemma If C1' si C2' are basic instances of C1 and C2 and then there is a clause C such that C' is an instance of C  Theorem: Resolution is refutationally complete.  A set of clauses S is unsatisfiable iff there is a deduction of the empty clause from S. 38

Powerful inference rules: Paramodulation  C1: P(a)  C2: a=b  If C1 contains a term t and there is a unity clause C2: t=s then we can infer a new clause from C1 by the substitution of a single occurrence of t in C1 with s.  Paramodulation is a generalisation of that rule 39

Paramodulation  Be C1 and C2 two clauses, which have no variables in common. If C1: L[t]  C1' C2: r = s  C2'  where L[t] is a literal containing t, C1' and C2' are clauses, and  = mgu(t,r), then we can infer by paramodulation L  [s  ]  C1'   C2'   where L  [s  ] is obtained by replacing only one single occurrence of t  in L  with s .  Binary paramodulant 40

Paramodulation  Paramodulation with factorization – general paramodulation  Paramodulation with resolution is sound and refutationally complete 41

Example Group axioms % Associativity (x * (y * z)) = ((x * y) * z). % Identity element ((x * e) = x) & ((e * x) = x). % Inverse element ((x * i(x)) = e) & ((i(x) * x)=e). Prove % Right regular element ((f1 * f2) = (f0 * f2)) -> (f1 = f0). 42

 1 x * e = x & e * x = x [assumption].  2 x * i(x) = e & i(x) * x = e [assumption].  3 f1 * f2 = f0 * f2 -> f1 = f0 [goal].  4 x * (y * z) = (x * y) * z. [assumption].  5 (x * y) * z = x * (y * z). [copy(4),flip(a)].  6 x * e = x. [clausify(1)].  7 e * x = x. [clausify(1)].  8 x * i(x) = e. [clausify(2)].  9 i(x) * x = e. [clausify(2)].  10 f0 * f2 = f1 * f2. [deny(3)].  11 f1 * f2 = f0 * f2. [copy(10),flip(a)].  12 f0 != f1. [deny(3)].  13 f1 != f0. [copy(12),flip(a)].  14 x * (i(x) * y) = y. [para(8(a,1),5(a,1,1)),rewrite([7(2)]),flip(a)].  e * z = x * (i(x) * z) [8,5]  z = x * (i(x) * z) [7]y = x * (i(x) * y)  x * (i(x) * y) = y [flip] 43

 15 x * (y * i(x * y)) = e. [para(8(a,1),5(a,1)),flip(a)].  17 i(x) * (x * y) = y. [para(9(a,1),5(a,1,1)),rewrite([7(2)]),flip(a)].  22 i(f1) * (f0 * f2) = f2. [para(11(a,1),17(a,1,2))].  27 i(f1) * f0 = e. [para(22(a,1),15(a,1,2,2,1)),rewrite([5(8),8(7),6(5)])].  29 f1 = f0. [para(27(a,1),14(a,1,2)),rewrite([6(3)])].  30 $F. [resolve(29,a,13,a)]. 44

Credit Slides 6,7,9,10,11,12 are from the slides First-Order Theorem Proving Peter Baumgartner NICTA, Logic and Computation Program, Canberra 45