Stephanie Freer Lab Meeting 4.13.10. Post-embryonic expression of sim 3 anterior Sim + clusters - DAMv1/2 - BAmas1/2 - Trdm Optic lobes Midline of the.

Slides:



Advertisements
Similar presentations
Rein et al., 2002 Current Biology The mushroom bodies (MBs) in the adult Drosophila brain.
Advertisements

Announcement of Winners. Lucie Jonatova (Dolezal Lab) Brain, lymph gland lobe, ring gland and imaginal discs of Drosophila third instar larva are in figure.
Rein et al., 2002 Current Biology The mushroom bodies (MBs) in the adult Drosophila brain.
Genetic Analysis of Behavior. Goals and Assumptions  Goal: Begin to dissect circuitry that controls larval (and possibly) behavior  Assumptions:  Larval.
Lab Meeting Post-embryonic expression of sim 3 Sim + clusters in the larval central brain Optic lobes Midline of the ventral nerve cord Hartenstein.
Stephanie Freer Lab Meeting Post-embryonic expression of sim 3 anterior Sim + clusters Optic lobes Midline of the VNC Posterior clusters Hartenstein.
Axon Targeting and Cell Fate in the Drosophila Eye Humera Ahmad Verni Logendran Herman Lab.
Christine Saseun Doe Lab University of Oregon
The gene machine: Controlling the creation of synapse formation l. copeland-hardin Howard University P.i. & Mentor: Tory Herman.
Lori Evans Herman Lab Institute of Molecular Biology University of Oregon SPUR Program Using Drosophila to investigate axon targeting.
Spring 2016 BNFO 300 PTK7 protein domains involvement in PCP regulation of axon pathfinding of CoPA neurons in Zebrafish. Damien Islek:
Bifocal Is a Downstream Target of the Ste20-like Serine/Threonine Kinase Misshapen in Regulating Photoreceptor Growth Cone Targeting in Drosophila  Wenjing.
Genetic Specification of Axonal Arbors
Short-Range and Long-Range Guidance by Slit and Its Robo Receptors
Volume 14, Issue 4, Pages (February 2016)
Volume 59, Issue 5, Pages (September 2008)
Tony DeFalco, Nicole Camara, Stéphanie Le Bras, Mark Van Doren 
Volume 25, Issue 3, Pages (March 2000)
Cell-Autonomous Requirement of the USP/EcR-B Ecdysone Receptor for Mushroom Body Neuronal Remodeling in Drosophila  Tzumin Lee, Simone Marticke, Carl.
Volume 18, Issue 21, Pages (November 2008)
Melissa Hernandez-Fleming, Ethan W. Rohrbach, Greg J. Bashaw 
Volume 25, Issue 10, Pages (May 2015)
Volume 15, Issue 9, Pages (May 2005)
Drosophila JAB1/CSN5 Acts in Photoreceptor Cells to Induce Glial Cells
The Conserved Immunoglobulin Superfamily Member SAX-3/Robo Directs Multiple Aspects of Axon Guidance in C. elegans  Jennifer A Zallen, B.Alexander Yi,
Distinct Protein Domains and Expression Patterns Confer Divergent Axon Guidance Functions for Drosophila Robo Receptors  Bettina Spitzweck, Marko Brankatschk,
Volume 96, Issue 4, Pages e4 (November 2017)
MicroRNA Processing Pathway Regulates Olfactory Neuron Morphogenesis
Volume 42, Issue 1, Pages (April 2004)
Hierarchical Deployment of Factors Regulating Temporal Fate in a Diverse Neuronal Lineage of the Drosophila Central Brain  Chih-Fei Kao, Hung-Hsiang Yu,
Lateral Signaling Mediated by Axon Contact and Calcium Entry Regulates Asymmetric Odorant Receptor Expression in C. elegans  Emily R. Troemel, Alvaro.
Making Connections in the Fly Visual System
BTB/POZ-Zinc Finger Protein Abrupt Suppresses Dendritic Branching in a Neuronal Subtype-Specific and Dosage-Dependent Manner  Wenjun Li, Fay Wang, Laurent.
Unrestricted Synaptic Growth in spinster—a Late Endosomal Protein Implicated in TGF- β-Mediated Synaptic Growth Regulation  Sean T Sweeney, Graeme W Davis 
Slit Is the Midline Repellent for the Robo Receptor in Drosophila
Volume 53, Issue 2, Pages (January 2007)
Elizabeth E. Caygill, Andrea H. Brand  Cell Reports 
Lethal Giant Larvae Acts Together with Numb in Notch Inhibition and Cell Fate Specification in the Drosophila Adult Sensory Organ Precursor Lineage  Nicholas.
Volume 78, Issue 3, Pages (May 2013)
Dosage-Sensitive and Complementary Functions of Roundabout and Commissureless Control Axon Crossing of the CNS Midline  Thomas Kidd, Claire Russell, Corey.
Volume 18, Issue 17, Pages (September 2008)
Combgap Relays Wingless Signal Reception to the Determination of Cortical Cell Fate in the Drosophila Visual System  Yuechun Song, Soohee Chung, Sam Kunes 
Volume 14, Issue 4, Pages (February 2004)
From Lineage to Wiring Specificity
Volume 43, Issue 5, Pages (September 2004)
Afferent Induction of Olfactory Glomeruli Requires N-Cadherin
Control of Dendritic Field Formation in Drosophila
Volume 49, Issue 2, Pages (January 2006)
Volume 37, Issue 2, Pages (January 2003)
Let-7-Complex MicroRNAs Regulate the Temporal Identity of Drosophila Mushroom Body Neurons via chinmo  Yen-Chi Wu, Ching-Huan Chen, Adam Mercer, Nicholas S.
Benjamin J. Matthews, Wesley B. Grueber  Current Biology 
Aljoscha Nern, Yan Zhu, S. Lawrence Zipursky  Neuron 
Conserved miR-8/miR-200 Defines a Glial Niche that Controls Neuroepithelial Expansion and Neuroblast Transition  Javier Morante, Diana M. Vallejo, Claude.
Volume 128, Issue 2, Pages (January 2007)
Guidance Cues at the Drosophila CNS Midline: Identification and Characterization of Two Drosophila Netrin/UNC-6 Homologs  Robin Harris, Laura Moore Sabatelli,
The Color-Vision Circuit in the Medulla of Drosophila
Volume 21, Issue 5, Pages (November 1998)
Genes Expressed in Neurons of Adult Male Drosophila
Volume 13, Issue 10, Pages (May 2003)
Short-Range and Long-Range Guidance by Slit and Its Robo Receptors
Volume 59, Issue 5, Pages (September 2008)
Volume 22, Issue 3, Pages (March 1999)
Volume 53, Issue 2, Pages (January 2007)
flr mutations result in defects in the adult eye and larval eye disc.
Control of Dendritic Field Formation in Drosophila
Linking Cell Fate, Trajectory Choice, and Target Selection: Genetic Analysis of Sema-2b in Olfactory Axon Targeting  William J. Joo, Lora B. Sweeney,
Phenotypic analysis of the CNS in mutants for Ror, otk and otk2
Volume 78, Issue 3, Pages (May 2013)
The Transmembrane Semaphorin Sema I Is Required in Drosophila for Embryonic Motor and CNS Axon Guidance  Hung-Hsiang Yu, Houmam H Araj, Sherry A Ralls,
Volume 44, Issue 5, Pages (December 2004)
Presentation transcript:

Stephanie Freer Lab Meeting

Post-embryonic expression of sim 3 anterior Sim + clusters - DAMv1/2 - BAmas1/2 - Trdm Optic lobes Midline of the VNC Posterior clusters Hartenstein (1993) Sim OL D B T Posterior Anterior

Analysis of sim-GAL4 enhancer lines To visualize the specific projection pattern for each enhancer-GAL4 line: 1. Cross enhancer-GAL4 to UAS-GFP.nls or UAS mCD8-GFP 2. Analyze embryonic and larval brains for GFP-expression in sim + cells 3. Further dissect fragments not restricted to central brain clusters

Optic lobe expression sim GFP Laminar OL Neurons Medullar OL Neurons

Posterior central brain clusters Lateral Posterior Cluster sim GFP Small Posterior Cluster

Expression in the anterior clusters BP106 GFP Intron 3-GAL4 x UAS mCD8-GFP Intron 3 contains enhancer elements responsible for sim expression in all 3 of the anterior central brain clusters DAMv1/2 BAmas1/2 Trdm

Further dissection of Intron 3 F2 1.4kb F1F3 1.Separate optic lobe expression from central brain expression  capture all central brain neurons within one line 2. Generate lines for individual subsets of central brain neurons

Intron 3 F1-GAL4 x UAS mCD8-GFP AnteriorPosterior GFP expression - a subset of anterior central brain cells - medullar optic lobe expression (subset) - posterior clusters sim GFP DAMv1/2 BAmas1/2 DPM

Additional intron 3-GAL4 enhancer constructs Intron 3 Frag 3 Intron 3 F2-GAL4 – no expression Intron 3 F3-GAL4 – subset of medulla Generated 3 500bp overlapping constructs sim GFP F2 1.4kb F1F3 F1a F1b F1+ F2

Intron 3 F1a-GAL4 x UAS mCD8-GFP Posterior GFP GFP expression - anterior central brain cell clusters - medullar optic lobe expression - lateral posterior clusters - somewhat weaker Anterior D B T Medulla

Intron 3 F1b-GAL4 x UAS mCD8-GFP sim BP106 GFP  Trdm BAmas1/2 Intron 3 F1b GAL4 – anterior Trdm cluster - optic lobe medulla - staining weak in both cases

Intron 3 F1+F2-GAL4 x UAS mCD8-GFP DPM sim GFP Intron 3 F1 GAL4 expression – DAMv1/2, BAmas1/2, medulla, lateral post., DPM Intron 3 F2 GAL4 expression – unspecific cells labeled Intron 3 F1+F2 expression – DPM, lateral post., medulla Repressive element in intron 3 F2 fragment?

Summary of Larval Expression DAMv1/2, BAmas1/2 Trdm Lateral posterior Small Posterior DPM Medulla OL Lamina OL MidlineOther Intron 3 GAL4xxx xx x Intron 3 F1 GAL4x x xx Intron 3 F2 GAL4 x Intron 3 F3 GAL4 x Intron 3 F1a GAL4 xxx xx Intron 3 F1b GAL4 x x Intron 3 F1+F2 GAL4 x xx 3.7 sim GAL4 x x 1.0kb GAL4xxxxxxxxx Frag 2 GAL4 x x

Intron 3-GAL4 enhancer constructs F2 1.4kb F1F3 F1a F1b F1+ F2 Medulla - elements throughout intron 3 DAMv1/2, BAmas1/2 – likely within 250bp F1a Trdm - within F1a, F1b, not in F1+F2 Lateral posterior cluster – also likely within 250bp F1a

Post-embryonic function of sim? 1. MARCM - sim mutants in posterior clusters 2. sim RNAi - axon fasciculation defects 3. Adhesive/Anti-adhesive proteins

DAMv1/2 sim + cell clusters send axons across the commissure and fasciculate together sim² WT Sim DAPI GFP Sim GFP MARCM (mosaic analysis with a repressible cell marker)  Generates homozygous marked/mutant cells from heterozygous precursors

Anterior MARCM GFP clones sim BP106 GFP   DAMv1/2

MARCM clones in the posterior sim clusters Posterior  Anterior sim BP106 GFP sim BP106 GFP  3 tightly fasciculated axonal bundles cross the commissure

Posterior mutant sim BP106 DCAD2 sim DCAD2    WT sim H9 /Df(3R)ry 75

DM1 lineage Secondary axon tract projects toward interhemispheric region Enters commissure at site 1 of the DPC1, projects contralaterally, defasciculates in the neuropil Descending ipsilateral projection from which a small commissural bundle branches off commissural fiber bundles

WT and mutant DPM clones sim BP106 GFP  WT DPM clone sim H9 DPM clone

sim RNAi Driving UAS sim RNAi construct (+UAS dcr2) with intron 3-GAL4 Expected: 50% ♀ All brains sim positive (n = ~40) Recombine UAS sim RNAi with UAS mCD8-GFP to label axons Reduced sim? Fasciculation defects? DAMv1/2 BAmas1/2 sim

Conclusions Further dissection of intron 3 expression Axonal trajectory of the lateral posterior clusters using MARCM Defasciculation in the DPM mutant clone Does the RNAi construct work? Is there a defasciculation phenotype when sim is reduced? Lateral posterior cluster mutant clones BAmas1/2 clones Trdm clones

Axons in late sim mutant DAMv1/2 Trdm BAmas1/2 sim BP106 Trdm? BAmas1/2? WT sim H9 /Df(3R)ry 75