A core Course on Modeling Introduction to Modeling 0LAB0 0LBB0 0LCB0 0LDB0 S.24.

Slides:



Advertisements
Similar presentations
Omeka Adding Items. Select Add a new item to your archive Log in to Omeka at:
Advertisements

A core course on Modeling kees van Overveld Week-by-week summary.
Integers Free powerpoints at
Scientific Method Writing A Lab
A core Course on Modeling Introduction to Modeling 0LAB0 0LBB0 0LCB0 0LDB0 S.14.
A core Course on Modeling Introduction to Modeling 0LAB0 0LBB0 0LCB0 0LDB0 S.6.
A core Course on Modeling Introduction to Modeling 0LAB0 0LBB0 0LCB0 0LDB0 S.20.
A core Course on Modeling Introduction to Modeling 0LAB0 0LBB0 0LCB0 0LDB0 S.13.
A core Course on Modeling Introduction to Modeling 0LAB0 0LBB0 0LCB0 0LDB0 P.5.
A core Course on Modeling Introduction to Modeling 0LAB0 0LBB0 0LCB0 0LDB0 P.10.
A core Course on Modeling Introduction to Modeling 0LAB0 0LBB0 0LCB0 0LDB0 P.7.
A core Course on Modeling Introduction to Modeling 0LAB0 0LBB0 0LCB0 0LDB0 S.7.
A core Course on Modeling Introduction to Modeling 0LAB0 0LBB0 0LCB0 0LDB0 P.13.
A core Course on Modeling Introduction to Modeling 0LAB0 0LBB0 0LCB0 0LDB0 P.16.
A core Course on Modeling Introduction to Modeling 0LAB0 0LBB0 0LCB0 0LDB0 P.2.
A core Course on Modeling Introduction to Modeling 0LAB0 0LBB0 0LCB0 0LDB0 S.27.
A core Course on Modeling Introduction to Modeling 0LAB0 0LBB0 0LCB0 0LDB0 S.16.
Phase Difference = Phase Difference = 0.05.
Introduction to Management Science
Computational Methods for Management and Economics Carla Gomes Module 4 Displaying and Solving LP Models on a Spreadsheet.
Lesson 4-5 Example Example 1 Find the product of 3 and 7 by using repeated addition. Then write the multiplication fact and its commutative fact.
A core Course on Modeling Introduction to Modeling 0LAB0 0LBB0 0LCB0 0LDB0 P.8.
A core Course on Modeling Introduction to Modeling 0LAB0 0LBB0 0LCB0 0LDB0 P.11.
A core Course on Modeling Introduction to Modeling 0LAB0 0LBB0 0LCB0 0LDB0 S.28.
A core Course on Modeling Introduction to Modeling 0LAB0 0LBB0 0LCB0 0LDB0 S.15.
A core Course on Modeling Introduction to Modeling 0LAB0 0LBB0 0LCB0 0LDB0 S.31.
Welcome to COE212: Engineering Programming Instructor: Wissam F. Fawaz Office 103, Bassil bldg. All week long: What is computer.
A core Course on Modeling Introduction to Modeling 0LAB0 0LBB0 0LCB0 0LDB0 S.21.
A core Course on Modeling Introduction to Modeling 0LAB0 0LBB0 0LCB0 0LDB0 S.26.
A core Course on Modeling Introduction to Modeling 0LAB0 0LBB0 0LCB0 0LDB0 P.15.
NEW VISION OF ENGINEERING ECONOMY COURSE (VISION) MODULE 3 LECTURE 1-2 Cairo, 13 July 2005.
The art of Devising Thumnail Models Kees van Overveld for Marie Curie International PhD exchange Program.
A core Course on Modeling Introduction to Modeling 0LAB0 0LBB0 0LCB0 0LDB0 P.12.
A core Course on Modeling Introduction to Modeling 0LAB0 0LBB0 0LCB0 0LDB0 S.19.
Informed Search Strategies Lecture # 8 & 9. Outline 2 Best-first search Greedy best-first search A * search Heuristics.
A core Course on Modeling Introduction to Modeling 0LAB0 0LBB0 0LCB0 0LDB0 P.14.
A core Course on Modeling Introduction to Modeling 0LAB0 0LBB0 0LCB0 0LDB0 S.8.
A core Course on Modeling Introduction to Modeling 0LAB0 0LBB0 0LCB0 0LDB0 S.32.
A core Course on Modeling Introduction to Modeling 0LAB0 0LBB0 0LCB0 0LDB0 S.30.
A core Course on Modeling Introduction to Modeling 0LAB0 0LBB0 0LCB0 0LDB0 S.25.
Adding SubtractingMultiplyingDividingMiscellaneous.
A core Course on Modeling Introduction to Modeling 0LAB0 0LBB0 0LCB0 0LDB0 S.12.
Teaching and assessment issues in physics major classes ~ Looking for Innovative Approaches How to know before exams whether advanced concepts comprehended.
A core Course on Modeling Introduction to Modeling 0LAB0 0LBB0 0LCB0 0LDB0 S.10.
A core Course on Modeling Introduction to Modeling 0LAB0 0LBB0 0LCB0 0LDB0 S.9.
$100 $200 $300 $400 $100 $200 $300 $400 $300 $200 $100 Adding multiples of 10 Add 1 to 2 digit numbers with regrouping Add 3 two digit numbers Ways.
A core Course on Modeling Introduction to Modeling 0LAB0 0LBB0 0LCB0 0LDB0 S.2.
亚洲的位置和范围 吉林省白城市洮北区教师进修学校 郑春艳. Q 宠宝贝神奇之旅 —— 亚洲 Q 宠快递 你在网上拍的一套物理实验器材到了。 Q 宠宝贝打电话给你: 你好,我是快递员,有你的邮件,你的收货地址上面 写的是学校地址,现在学校放假了,能把你家的具体 位置告诉我吗? 请向快递员描述自己家的详细位置!
A core Course on Modeling Introduction to Modeling 0LAB0 0LBB0 0LCB0 0LDB0 S.29.
基 督 再 來 (一). 經文: 1 你們心裡不要憂愁;你們信神,也當信我。 2 在我父的家裡有許多住處;若是沒有,我就早 已告訴你們了。我去原是為你們預備地去 。 3 我 若去為你們預備了地方,就必再來接你們到我那 裡去,我在 那裡,叫你們也在那裡, ] ( 約 14 : 1-3)
Operations on Rational Number s Fractions- Adding Fractions with unlike Denominators.
A core Course on Modeling Introduction to Modeling 0LAB0 0LBB0 0LCB0 0LDB0 P.4.
Lab # 7: Safety Stock Product Cycling
Introduction to Computing
Cat Scratchers Sydney - dnclifestyle.com.au
Accounting courses in Chandigarh. Introduction to accounting.
Слайд-дәріс Қарағанды мемлекеттік техникалық университеті
A core Course on Modeling
.. -"""--..J '. / /I/I =---=-- -, _ --, _ = :;:.
A core course on Modeling kees van Overveld
II //II // \ Others Q.
I1I1 a 1·1,.,.,,I.,,I · I 1··n I J,-·
A core Course on Modeling
Adding with 9’s.
Adding with 10’s.
Cat.
Adding ____ + 10.
. '. '. I;.,, - - "!' - -·-·,Ii '.....,,......, -,
Types of Errors And Error Analysis.
Presentation transcript:

A core Course on Modeling Introduction to Modeling 0LAB0 0LBB0 0LCB0 0LDB0 S.24

Execution phase: operate model

Revisit optimization with multiple criteria: Problems with lumping penalties Q=  i w i q i what are the values of w i (trial and error)? what are the values of w i (trial and error)? don’t add things that shouldn’t be added. don’t add things that shouldn’t be added.  look for alternative approach, using dominance  look for alternative approach, using dominance Cat.-II –space and dominance

Assume cat.-II quantities are ordinals: Every axis in cat.-II space is ordered; concept C 1 dominates C 2 iff, for all cat.-II quantities q i, C 1.q i is better than C 2.q i ; ‘Being better’ may mean ‘ ’ (e.g., profit); Cat.-II –space and dominance

Cat.-II –space and dominance f2 should be minimal (e.g., waste) f1 should be minimal (e.g., costs) B.f1<C.f1 and B.f2<C.f2, so B dominates C A.f1<C.f1 and A.f2<C.f2, so A dominates C A.f2<B.f2 and B.f1<A.f1, so B and A don’t dominate each other

Only non-dominated solutions are relevant  dominance allows pruning cat.-I space; Cat.-II –space and dominance

Only non-dominated solutions are relevant  dominance allows pruning cat.-I space; Cat.-II –space and dominance

Only non-dominated solutions are relevant  dominance allows pruning cat.-I space; Nr. non-dominated solutions is smaller with more cat.-II quantities Cat.-II –space and dominance

Only non-dominated solutions are relevant  dominance allows pruning cat.-I space; Nr. non-dominated solutions is smaller with more cat.-II quantities Cat.-II –space and dominance

Only non-dominated solutions are relevant  dominance allows pruning cat.-I space; Nr. non-dominated solutions is smaller with more cat.-II quantities  nr. of cat.-II quantities should be small (otherwise there are few dominated solutions). Cat.-II –space and dominance

In cat.-II space, dominated areas are half-infinite regions bounded by iso-coordinate lines/planes; Solutions falling in one of these regions are dominated and can be ignored in cat.-I-space exploration; Non-dominated solutions form the Pareto front. Trade-offs and the Pareto front

D Cat.-II quantities f1 and f2 both need to be minimal. A and B are non-dominated, C is dominated. Of A and B, none dominates the other. Trade-offs and the Pareto front

D Cat.-II quantities f1 and f2 both need to be minimal. Solution D would dominate all other solutions – if it would exist. Trade-offs and the Pareto front

Relevance of Pareto-front: it bounds the achievable part of cat.-II space; solutions not on the Pareto front can be discarded. Trade-offs and the Pareto front

Relevance of Pareto-front: it exists for any model function, although in general it can only be approximated by sampling the collection of solutions. Trade-offs and the Pareto front

Relevance of Pareto-front: it defines two directions in cat.-II space: Trade-offs and the Pareto front

direction of absolute improvement Relevance of Pareto-front: it defines two directions in cat.-II space: the direction of absolute improvement / deterioration, Trade-offs and the Pareto front

direction of absolute deterioration Relevance of Pareto-front: it defines two directions in cat.-II space: the direction of absolute improvement / deterioration, Trade-offs and the Pareto front

tangent to the pareto-front: trade-offs Relevance of Pareto-front: it defines two directions in cat.-II space: the direction of absolute improvement / deterioration, and the plane perpendicular to this direction which is tangent to the Pareto front, which represents trade-offs between cat.-II quantities. Trade-offs and the Pareto front