E1 Strength distribution of halo nuclei observed via the Coulomb breakup Takashi Nakamura Tokyo Institute of Technology Workshop on Statistical Nuclear.

Slides:



Advertisements
Similar presentations
Contents Breakup reactions of 14 Be on a proton target  Inelastic scattering ( 14 Be)  One-neutron removal reaction ( 13 Be) Contents Breakup reactions.
Advertisements

Fig. 1 Side View of DALI from Up-stream 1 H( 17 C, 16 C → 15 C + n + γ)X Raw Doppler Effect Corrected Abstract DALI is a γ-ray detector, which is an array.
Hadron physics with GeV photons at SPring-8/LEPS II
Grupo de Física Nuclear Experimental G F E N CSIC I M E January 2006, Hirschegg, AustriaM.J.G. Borge, IEM CSIC1 Hirschegg’06: Astrophysics and Nuclear.
HIGS2 Workshop June 3-4, 2013 Nuclear Structure Studies at HI  S Henry R. Weller The HI  S Nuclear Physics Program.
Photo-Nuclear Physics Experiments by using an Intense Photon Beam Toshiyuki Shizuma Gamma-ray Nondestructive Detection Research Group Japan Atomic Energy.
Invariant-mass spectroscopy of neutron halo nuclei Takashi Nakamura 中村隆司 Tokyo Institute of Technology 東京工業大学 中日 NP 06, Shanghai.
Giant resonances, exotic modes & astrophysics
Spectroscopy at the Particle Threshold H. Lenske 1.
Kurchatov Institute, Moscow
Nara, June 03 Solar neutrino production rates by heavy ion reactions T. Motobayashi (RIKEN) 7 Be(p,  ) 8 B reaction pp chain in the sun direct measurement.
CEA DSM Irfu Shell evolution towards 100 Sn Anna Corsi CEA Saclay/IRFU/SPhN.
Lectures in Istanbul Hiroyuki Sagawa, Univeristy of Aizu June 30-July 4, Giant Resonances and Nuclear Equation of States 2. Pairing correlations.
Unstable vs. stable nuclei: neutron-rich and proton-rich systems
Γ spectroscopy of neutron-rich 95,96 Rb nuclei by the incomplete fusion reaction of 94 Kr on 7 Li Simone Bottoni University of Milan Mini Workshop 1°-
Single Neutron Stripping Reactions for Structural Study of 23 O Ravinder Kumar Department of Physics Kurukshetra University, Kurukshetra Kurukshetra -
Proton Inelastic Scattering on Island-of-Inversion Nuclei Shin’ichiro Michimasa (CNS, Univ. of Tokyo) Phy. Rev. C 89, (2014)
(p,g) reaction via transfer reaction of mirror nuclei and direct measurement of 11C(p,g)12N at DRAGON Bing Guo For nuclear astrophysics group China Institute.
Deeply Bound Pionic States in Sn at RIBF N. Ikeno (Nara Women’s Univ. M1) J. Yamagata-Sekihara (IFIC, Valencia Univ.) H. Nagahiro (Nara Women’s Univ.)
Coupled-Channel analyses of three-body and four-body breakup reactions Takuma Matsumoto (RIKEN Nishina Center) T. Egami 1, K. Ogata 1, Y. Iseri 2, M. Yahiro.

Higher Order Multipole Transition Effects in the Coulomb Dissociation Reactions of Halo Nuclei Dr. Rajesh Kharab Department of Physics, Kurukshetra University,
Reaction rates in the Laboratory Example I: 14 N(p,  ) 15 O stable target  can be measured directly: slowest reaction in the CNO cycle  Controls duration.
25 9. Direct reactions - for example direct capture: Direct transition from initial state |a+A> to final state B +  geometrical.
1 TCP06 Parksville 8/5/06 Electron capture branching ratios for the nuclear matrix elements in double-beta decay using TITAN ◆ Nuclear matrix elements.
Coupled-Channel Computation of Direct Neutron Capture and (d,p) reactions on Non- Spherical Nuclei Goran Arbanas (ORNL) Ian J. Thompson (LLNL) with Filomena.
Reaction cross sections of unstable nuclei Contents What is reaction cross section (  R )?  R Effective matter density distributions of unstable nuclei.
Spin-isospin studies with the SHARAQ Spectrometer Tomohiro Uesaka & Y. Sasamoto, K. Miki, S. Noji University of Tokyo for the SHARAQ collaboration Aizu2010.
Proton resonance scattering of 7 Be H. Yamaguchi, Y. Wakabayashi, G. Amadio, S. Kubono, H. Fujikawa, A. Saito, J.J. He, T. Teranishi, Y.K. Kwon, Y. Togano,
1 10/15/2015 Cuie Wu School of Physics, Peking University Neutron removal reactions of 17 C Cuie Wu et al., JPG31(2005)39.
Neutron transfer reactions at large internuclear distances studied with the PRISMA spectrometer and the AGATA demonstrator.
Omega meson in nucleus, experimental study K. Ozawa (Univ. of Tokyo)
Gamma-ray strength functions obtained with the Oslo method Ann-Cecilie Larsen July 8, 2008 Workshop on Statistical Nuclear Physics and Applications in.
Neutral pion photoproduction and neutron radii Dan Watts, Claire Tarbert University of Edinburgh Crystal Ball and A2 collaboration at MAMI Eurotag Meeting.
Sep. 2003CNS Summer School Feb 分 => Talk なら 35 枚だが、 lecture だと少なめ? 50 分 => Talk なら 35 枚だが、 lecture だと少なめ?
RCNP.08 Breakup of halo nuclei with Coulomb-corrected eikonal method Y. Suzuki (Niigata) 1.Motivation for breakup reactions 2.Eikonal and adiabatic approximations.
Isospin mixing and parity- violating electron scattering O. Moreno, P. Sarriguren, E. Moya de Guerra and J. M. Udías (IEM-CSIC Madrid and UCM Madrid) T.
Pygmy Dipole Resonance in 64Fe
Coulomb dissociation for astrophysics T. Gomi (RIKEN) 22Mg(p,γ)23Al
The NSCL is funded in part by the National Science Foundation and Michigan State University. 55 Co S800 PID - 56 Ni(d, 3 He) 55 Co Target (p / d) 56 Ni.
Cross section of elementally process [5] The  -ray spectroscopy of light hypernuclei at J-PARC (E13) K. Shirotori for the Hyperball-J collaboration Department.
Coupling of (deformed) core and weakly bound neutron M. Kimura (Hokkaido Univ.)
M. Matsuo, PRC73(’06) Matter Calc. Two-particle density.
Three-body radiative capture reactions in astrophysics L.V. Grigorenko K.-H. Langanke and M. Zhukov FLNR, JINR, Dubna and GSI, Darmstadt.
H.Sakurai Univ. of Tokyo Spectroscopy on light exotic nuclei.
Transfer Reactions with Halo Nuclei Barry Davids, TRIUMF ECT* 2 Nov 2006.
Coulomb breakup of the two-neutron halo nucleus 11 Li Takashi Nakamura Tokyo Institute of Technology International Conference on Finite Fermionic Systems.
The Coulomb dissociation of 14Be 宋玉收 哈尔滨工程大学 上海.
Reaction studies with low-energy weakly-bound beams Alessia Di Pietro INFN-Laboratori Nazionali del Sud NN 2015Alessia Di Pietro,INFN-LNS.
1 CNS summer school 2002 The RI-Beam Factory and Recent Development in Superheavy Elements Search at RIKEN ◆ Brief introduction to the RI Beam Factory.
Fusion of light halo nuclei
Jan. 18, 2008 Hall C Meeting L. Yuan/Hampton U.. Outline HKS experimental goals HKS experimental setup Issues on spectrometer system calibration Calibration.
Nuclear and Radiation Physics, BAU, First Semester, (Saed Dababneh). 1.
Faddeev Calculation for Neutron-Rich Nuclei Eizo Uzu (Tokyo Univ. of Science) Collaborators Masahiro Yamaguchi (RCNP) Hiroyuki Kamada (Kyusyu Inst. Tech.)
Coulomb breakup of 22 C and 31 Ne N. Kobayashi Department of Physics, Tokyo Institute of Technology.
Structure of light Λ hypernuclei Emiko Hiyama (RIKEN)
The experimental evidence of t+t configuration for 6 He School of Physics, Peking University G.L.Zhang Y.L.Ye.
Nuclear structure experiments beyond the neutron dripline Unbound – resonance observed known to be unb ound 26 O 19,21 C 15 Be.
Few-Body Models of Light Nuclei The 8th APCTP-BLTP JINR Joint Workshop June 29 – July 4, 2014, Jeju, Korea S. N. Ershov.
First ExclusiveMeasurement of the Non-Mesonic Weak Deacay of 12  C First Exclusive Measurement of the Non-Mesonic Weak Deacay of 12  C Seoul national.
(g, n) (g, p) experiment at SAMURAI
the s process: messages from stellar He burning
L. Acosta1, M. A. G. Álvarez2, M. V. Andrés2, C. Angulo3, M. J. G
The neutron capture cross section of the s-process branch point 63Ni
Tan Ahn, S. Henderson, S. Aguilar, A. Simon, W. P. Tan,
Study of the resonance states in 27P by using
Study of the resonance states in 27P by using
Coulomb Dissociation of 26Ne
Yasuhiro Togano Rikkyo University
Probing correlations by use of two-nucleon removal
Presentation transcript:

E1 Strength distribution of halo nuclei observed via the Coulomb breakup Takashi Nakamura Tokyo Institute of Technology Workshop on Statistical Nuclear Physics and Applications in Astrophysics and Technology, OHIO University, July 2008

Soft E1 Excitation of 2n halo nucleus --Coulomb Breakup of 11 Li 3 Contents T. Nakamura, A.M.Vinodkumar et al.,PRL96, (2006). Soft E1 Excitation of 1n halo nucleus--- Coulomb Breakup of 11 Be 4 SAMURAI RIBF 1 Introduction T.Nakamura et al.,PLB 331,296(1994). N.Fukuda, TN et al.,PRC70, (2004). 2 Coulomb Breakup of 15 C: Application to Astrophysics Paper in preparation

Ordinary Nucleus Photo- absorption of Nucleus p n Giant Dipole Resonance (GDR) E x ~80A -1/3 MeV ExEx B(E1) (E1 Transition Probability)  (=E  9 Li n n  ExEx (=E  B(E1) (E1 Transition Probability) 10~20MeV 1~2MeV 9 Li Soft E1 Excitation

E1 ? Reaction Mechanism of Soft E1 Excitation? Soft Dipole ResonanceDirect Coulomb Breakup Slow Vibration of core against halo E x (Peak)  8 5 SnSn B(E1)  S n dB(E1) dE x  exp(iqr)| rY 1 m |  gs  | 2 Z A S n (E x - S n ) 3/2 Ex4Ex4  core n c.f. Pigmy Resonance

Coulomb Breakup 11 Be Heavy Target (Pb) 11 Be* 10 Be n  Excitation by a Virtual Photon Cross Section = (Photon Number ) x  Transition Probability)  > 0.3 c Excitation Energy (=Photon Energy ) Invariant Mass Spectroscopy

dB(E1) dE x  exp(iqr)| rY 1 m |  gs  | 2 Z A S n (E x - S n ) 3/2 Ex4Ex4  Huge E1 Probability (usually B(E1) < ) B(E1) Observed for Neutron-halo 11 Be nucleus core n T.Nakamura et al., PLB 331,296(1994) N.Fukuda et al., PRC70, (2004) Direct Breakup Model 11 Be(70MeV/u)+Pb No Resonance But Huge Peak

|  gs (1/2 + )  =  | 10 Be(0 + )  s 1/2  | 10 Be(2 + )  d 5/2      : Spectroscopic factor dB(E1) dE x  exp(iqr)| rY 1 m |  gs  | 2 Z A S n (E x - S n ) 3/2 Ex4Ex4   -S n  ~   |exp(-r/ )/r| 2 Fourier Transform Low-energy B(E1) Halo State 11 Be ground state Halo State Non-Halo State Low-energy B(E1)---Very Sensitive to Halo Wave Function !   = 0.72  N.Fukuda, TN et al., PRC70, (2004)   = 0.61  R.Palit et al., PRC68, (2003).

Coulomb Breakup of 15 C 2 Application to Astrophysics

Burning zone in Low mass Asymptotic Giant Branch(AGB) stars Neutrons from 13 C(  n ) reaction 14 C(n,  ) 15 C(   ) 15 N(n,  ) 16 N(   ) 16 O(n,  ) 17 O(n,  ) 14 C M.Wiescher et al., ApJ, 363, C(n,  ) 15 C 15 C( ,n) 14 C Neutron Capture Reaction  Coulomb Dissociation Inhomogeneous Big Bang Model r-process model Terasawa,Sumiyoshi,Kajino, ApJ562,470(2001). 14 C(n,  ) 15 C: Beer et al.(Karlsruhe), 1/5 of Direct Capture, APJ387,258 (1992) R.Reifarth et al.(Karlsruhe), Consitent with Direct Capture PRC77,015804(2008) 15 C( ,n) 14 C: Coulomb breakup Horvath et al.(MSU), Inconsistent with Direct breakup APJ570, 926(2001) D. Pramanik et al.(GSI), Consistent with Direct breakup PLB551,63(2003) Previous Experiments

Neutron Capture Coulomb Dissociation The principle of detailed balance 14 C(n,  ) 15 C 15 C( ,n) 14 C Neutron Capture Reaction vs. Coulomb Dissociation Phase Factor ~100, Photon Number ~500 Target(Thick, Stable), Kinematical Focusing Advantages of Coulomb Dissociation

15  2 =0.75(4) Results: Coulomb Breakup of 15 C  14 C(0 + )  2s 1/2   14 C(2 + )  1d 5/2  15 C(g.s)= Consistent with GSI (   =0.73) (D.Pramanik et al) Data But not with MSU data r 0 =1.25 fm a=0.65 fm 15 C: moderate neutron-halo 1/2 + gs, S n =1.27MeV

Neutron Capture Cross Section From the data with b>20fm Consistent with Direct Capture Measurement 14 C(n,  ) 15 C By R.Reifarth et al., PRC77,015804(2008)

s-wave capture vs. p-wave capture A(n,  )B(Normal) S-wave capture dominant A(n,  )B(Halo) p-wave capture dominant p-wave s-wave En

18 C(n,  ) 19 C Case Theoretical Results: T.Sasaqui, T.Kajino, G.J.Mathews, K.Otsuki, T.Nakamura, Astrophys.J. 634, 1173 (2005). Experimental Input Coulomb Breakup of 19 C T.Nakamura et al.,PRL83,1112(1999). Conventional Calculation(HF)

Coulomb Breakup of halo nuclei 11 Li 3 T. Nakamura, A.M.Vinodkumar et al., Phys. Rev. Lett. 96, (2006).

One neutron halo nucleus vs. Two neutron halo nucleus 9Li9Li n n 10 Be n Motion between core and 1 valence neutron Motion between 1.Core and neutron 2.Core and neutron 3.Two valence neutrons (neutron-neutron correlations) S 2n =300 keV S n =504 keV

Coulomb Breakup of 11 Li (Summary of Previous Results) 43MeV/nucleon PLB348 (1995) 29. NPA 619 (1997) MeV/nucleon PRL 70 (1993) 730. PRC 48(1993) 118.

11 Li 9 Li n n Experimental at RIKEN Pb Target NEUT HOD BOMAG DC DALI 70MeV/nucleon

Examine Different Wall Events t1t1 t2t2 11 22  12 Condition: Almost no bias E th =6MeVee to avoid any gamma related events Elimination of Cross-Talk events

Coulomb Dissociation Spectrum of 11 Li Angular Distribution

Comparison with Previous results H.Esbensen and G.F. Bertsch NPA542(1992)310. “Soft dipole excitations in 11 Li” Comparison with a 3-body theory Calculation

Non-energy weighted E1 Cluster Sum Rule r1r1 r2r2 n 9 Li r c-2n (Extrapolated value) ~70% larger than non-correlated strength

Implication of the Narrow Opening Angle r1r1 r2r2 n 9 Li r c-2n Simple two-neutron shell model Melting of s(+ parity) and p(-parity) orbitals Mixture of different parity states is essential ! If full overlap (1s) 2 & (0p) 2 If only (1s) 2 or (0p) 2 If 50% overlap integral Mixture of higher L orbitals  More correlated H.Simon et al. PRL83,496(1999). N. Aoi et al. NPA616,181c(1997).

Experimental Result E( 9 Li-n) 1MeV Further Correlation? preliminary E( 9 Li-n) n 9 Li E( 9 Li-n) 1MeV Simulation (Phase Space) E( 9 Li-n)

10 Li s-wave Virtual state Obataind from 11 Li+C  9 Li+n spectrum p-wave?

E( 9 Li-nn) E(n-n) 1MeV preliminary n 9 Li n E( 9 Li-nn) E(n-n)

4 SAMURAI Project at RI Beam Factory

For the future E/A=350MeV RIBF (RIKEN RI Beam Factory) New Facility Completed in 2007 World Largest RI-beam facility 350MeV/nucleon, ~1p  A Heavy ions up to U beam Facility before MeV/nucleon K=2400MeV 8Tm 6%, 100mrad Samurai

To let neutron(s) pass through the gap Sweep Beam and Charged Fragments Good Mass Resolution for A~100 SAMURAI Superconducting Analyser for MUlti-particles from RAdio-Isotope Beam Bending Power BL=7Tm (B=3Tesla, 60deg bending) Funded! G JPY ~15M USD ~10M Euro +NEBULA (NEutron Detection System for Breakup of Unstable Nuclei with Large Acceptance) Superconducting Magnet

Summary Strong B(E1) at very low excitation energy neutron-neutron spatial correlation from E1 sum rule  nn ~50deg Soft E1 Excitation of 2n halo nucleus -- Coulomb Breakup of 11 Li 1 T. Nakamura, A.M.Vinodkumar et al., Phys. Rev. Lett. 96, (2006). 2 Coulomb Breakup of 15 C: Application to Astrophysics 3 Soft E1 Excitation of 1n halo nucleus--- Coulomb Breakup of 11 Be T.N et al.,PLB 331,296(1994); N.Fukuda, TN et al.,PRC70, (2004). Large E1 strength ~3W.u. at low excitation energies Direct Breakup Mechanism– Reflecting Large amplitude of Halo state Coulomb Breakup---Spectroscopic Tool (spectroscopic factors) 14 C(n.  ) 15 C can be studied by Coulomb breakup of 15 C P-wave direct capture  Direct breakup of Halo (s-wave) 4 SAMURAI Project (~4W.u)

R301n Collaboration: (Coulomb Breakup of 11 Li) T.Nakamura 1, A.M. Vinodkumar 1,T.Sugimoto 1,N.Aoi 2, H.Baba 2, D.Bazin 4, N.Fukuda 2, T.Gomi 2, H.Hasegawa 3, N. Imai 5, M.Ishihara 2, T.Kobayashi 6, Y.Kondo 1, T.Kubo 2, M.Miura 1, T.Motobayashi 2, H.Otsu 6, A.Saito 7, H.Sakurai 2, S.Shimoura 7, K.Watanabe 6, Y.X.Watanabe 5, T.Yakushiji 6, Y. Yanagisawa 2, Y.Yoneda 2 1. Tokyo Inst. of Technology 2. RIKEN 3. Rikkyo Univ 4. NSCL, MSU 5. KEK, 6. Tohoku University 7. CNS, Univ. of Tokyo

Peak at E rel =S n

MACS(Maxwellian-averaged neutron capture cross section) = 7.4(4)  b