Ra-225: The Path to a Next Generation EDM Experiment

Slides:



Advertisements
Similar presentations
LRP2010 WG5 Fundamental Interactions Nathal Severijns ( K.U.Leuven) for WG5 Scoping workshop Frankfurt, October th 2009.
Advertisements

Optical clocks, present and future fundamental physics tests
First Year Seminar: Strontium Project
Atomic Parity Violation in Ytterbium, K. Tsigutkin, D. Dounas-Frazer, A. Family, and D. Budker
Search for the Schiff Moment of Radium-225
University of Liverpool
The electron EDM search in solid ferroelectric Eu 0.5 Ba 0.5 TiO 3 Alex Sushkov Steve EckelSteve Lamoreaux.
electrostatic ion beam trap
Laser System for Atom Interferometry Andrew Chew.
University of California, Berkeley Nuclear Science Division, LBNL
Quantum Computing with Trapped Ion Hyperfine Qubits.
Another Route to CP Violation Beyond the SM – Particle Dipole Moments Dave Wark Imperial/RAL WIN05 Delphi June 10, 2005.
Electric dipole moments : a search for new physics E.A. Hinds Manchester, 12 Feb 2004 Imperial College London.
A Search for Temporal and Gravitational Variation of  in Atomic Dysprosium Variation of Constants & Violation of Symmetries, 24 July 2010 Arman Cingöz.
Search for the Electron Electric Dipole Moment Val Prasad Yale University Experiment: D.DeMille, D. Kawall, R.Paolino, V. Prasad F. Bay, S. Bickman, P.Hamilton,
Weak Interactions in the Nucleus III Summer School, Tennessee June 2003.
Zheng-Tian Lu Physics Division, Argonne National Laboratory Department of Physics, University of Chicago Search for a Permanent Electric Dipole Moment.
Reducing Decoherence in Quantum Sensors Charles W. Clark 1 and Marianna Safronova 2 1 Joint Quantum Institute, National Institute of Standards and Technology.
Experimental Atomic Physics Research in the Budker Group Tests of fundamental symmetries using atomic physics: Parity Time-reversal invariance Permutation.
Trapped Radioactive Isotopes:  icro-laboratories for fundamental Physics EDM in ground state (I=1/2) H = -(d E + μ B) · I/I m I = 1/2 m I = -1/2 2ω12ω1.
Studying dipolar effects in degenerate quantum gases of chromium atoms G. Bismut 1, B. Pasquiou 1, Q. Beaufils 1, R. Chicireanu 2, T. Zanon 3, B. Laburthe-Tolra.
TRIµP Laser Spectroscopy: Status and Future U Dammalapati TRI  P Facility Lasers for Na  -decay Ra Spectroscopy & EDM Towards cooling of Heavy Alkaline.
Precise Measurement of Vibrational Transition Frequency of Optically Trapped molecules NICT Masatoshi Kajita TMU G. Gopakumar, M. Abe, M. Hada We propose.
Search for an Atomic EDM with
Laser-microwave double resonance method in superfluid helium for the measurement of nuclear moments Takeshi Furukawa Department of Physics, Graduate School.
Structures and shapes from ground state properties 1.Nuclear properties from laser spectroscopy 2.Status of laser measurements of moments and radii 3.New.
Funded by: NSF Timothy C. Steimle, Fang Wang a Arizona State University, USA & Joe Smallman b, Physics Imperial College, London a Currently at JILA THE.
Fundamental interaction and nuclear structure studies with atom traps Peter Müller.
Photoassociation Spectroscopy of Ytterbium Atoms with Dipole-allowed and Intercombination Transitions K. Enomoto, M. Kitagawa, K. Kasa, S. Tojo, T. Fukuhara,
Motivation Polarized 3 He gas target Solenoid design and test 3 He feasibility test Summary and outlook Johannes Gutenberg-Universit ä t Mainz Institut.
Ultrahigh precision observation of nuclear spin precession and application to EDM measurement T. Inoue, T. Furukawa, H. Hayashi, M. Tsuchiya, T. Nanao,
Experiments with ultracold RbCs molecules Peter Molony Cs Rb.
Future electron EDM measurements using YbF
Simple Atom, Extreme Nucleus: Laser Trapping and Probing of He-8 Zheng-Tian Lu Argonne National Laboratory University of Chicago Funding: DOE, Office of.
Low-frequency nuclear spin maser and search for atomic EDM of 129 Xe A. Yoshimi RIKEN SPIN /10/11-16 Trieste, ITALY Collaborator : K. Asahi (Professor,
Elastic collisions. Spin exchange. Magnetization is conserved. Inelastic collisions. Magnetization is free. Magnetic properties of a dipolar BEC loaded.
Laser Laboratory (-ies) Peter Müller. 2 Search for EDM of 225 Ra Transverse cooling Oven: 225 Ra (+Ba) Zeeman Slower Optical dipole trap EDM probe Advantages:
Beam Polarimetry Matthew Musgrave NPDGamma Collaboration Meeting Oak Ridge National Laboratory Oct. 15, 2010.
Applications of polarized neutrons V.R. Skoy Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research Dubna, Moscow Region, Russia.
Light scattering and atom amplification in a Bose- Einstein condensate March 25, 2004 Yoshio Torii Institute of Physics, University of Tokyo, Komaba Workshop.
Stefan Truppe MM-Wave Spectroscopy and Determination of the Radiative branching ratios of 11 BH for Laser Cooling Experiments.
Fundamental Interactions Physics & Instrumentation Conclusions Conveners: P. Mueller, J. Clark G. Savard, N. Scielzo.
Molecular Deceleration Georgios Vasilakis. Outline  Why cold molecules are important  Cooling techniques  Molecular deceleration  Principle  Theory.
Quantum interference phenomenon Quantum interference phenomenon in the cold atomic cascade system $$ : National Science Council and National Space Program.
Atomic Parity Violation in Francium
Neutral atom nuclear EDM Experiments Investigating Radium Lorenz Willmann KVI, Groningen ECT* Trento, June 21-25, 2004.
Laser Laboratory (-ies) Peter Müller. 2 Search for EDM of 225 Ra Transverse cooling Oven: 225 Ra (+Ba) Zeeman Slower Optical dipole trap EDM probe Advantages:
Possible measurement of electron EDM in atoms with spatially alternating electric field T. Haseyama RIKEN, Japan ( The Institute of Physical and Chemical.
Laser Cooling and Trapping Magneto-Optical Traps (MOTs) Far Off Resonant Traps (FORTs) Nicholas Proite.
Parity nonconservation in the 6s 2 1 S 0 – 6s5d 3 D 1 transition in Atomic Ytterbium: status of the Berkeley experiments K. Tsigutkin, J. Stalnaker, V.
Fundamental interactions and symmetries at low energies what does NUPECC say…. Time-reversal violation and electric dipole moments Time-reversal violation.
State Scientific Center of the Russian Federation National Research Institute for Physical-Technical and Radio Engineering Measurements Progress in deep.
Electric dipole moment searches E.A. Hinds Birmingham 11 th July 2011 Centre for Cold Matter Imperial College London.
The TRI  P programme at KVI Tests of the Standard Model at low energy Hans Wilschut KVI – Groningen Low energy tests e.g. Time reversal violation precision.
Dipolar relaxation in a Chromium Bose Einstein Condensate Benjamin Pasquiou Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France.
The YbF T-violaton experiment Ben Sauer. YbF experiment (2011) d e < 1 x e.cm (90% c.l.) We (and others!) are aiming here! What is interesting.
Tests of Symmetries with Neutrons and Nuclei at Very Low Energies Stephan Paul TU-München.
Atomic Parity-Violation Experiments at Berkeley Dmitry Budker University of California, Berkeley Nuclear Science Division, LBNL
Standard Model Tests with Nuclei and Energy Applications Jerry Nolen, ANL and Guy Savard, ANL/Uof C (Standard Model) Yousry Gohar, ANL and Shekhar Mishra,
APV Anapole Moment in Yb (status) and Some Other Topics in Atomic Parity Violation Dmitry Budker University of California, Berkeley Nuclear Science Division,
1 m Tungsten Carbide Spectroscopy for electron EDM Measurement Jeongwon Lee June 23, 2011 Jinhai Chen, and Aaron E. Leanhardt Department of Physics, University.
Test of Variation in m p /m e using 40 CaH + Molecular Ions in a String Crystal NICT Masatoshi Kajita TMU Minori Abe We propose to test the variation in.
 The electron electric dipole moment (eEDM) is aligned with the spin and interacts with the giant (~84 GV/cm) effective internal electric field of the.
Alternate Gradient deceleration of large molecules
A single trapped Ra+ Ion to measure Atomic Parity Violation
P-347 Measurements of octupole collectivity in Rn and Ra nuclei using Coulomb excitation Addendum Peter Butler, David Joss and Marcus Scheck on behalf.
NEW DIRECTIONS IN ATOMIC PARITY VIOLATION
University of California, Berkeley
Outline “Search for octupole-deformed nuclei for enhancement of atomic EDM” 1Umesh Silwal, 2Prajwal Mohanmurthy, 1Durga P. Siwakoti, 1Jeff A. Winger 1Mississippi State University.
Searches for atomic electric dipole moments
Presentation transcript:

Ra-225: The Path to a Next Generation EDM Experiment Peter Mueller Argonne National Laboratory Supported by U.S. DOE, Office of Nuclear Physics Go to "View | Header and Footer" to add your organization, sponsor, meeting name here; then, click "Apply to All"

Electric Dipole Moment (EDM) Violates Both P and T A permanent EDM violates both time-reversal symmetry and parity + T + P - - - + EDM Spin EDM Spin EDM Spin Neutron Quark EDM Physics beyond the Standard Model: SUSY, String… Diamagnetic Atoms (Hg, Ra) Quark Chromo-EDM Paramagnetic Atoms (Tl) Molecules (PbO,YbF) Electron EDM

|a |b EDM of 225Ra enhanced Parity doublet - = (|a - |b)/2 Nuclear Spin = ½ Electronic Spin = 0 t1/2 = 15 days EDM of 225Ra enhanced: Large intrinsic Schiff moment due to octupole deformation; Closely spaced parity doublet; Relativistic atomic structure. Haxton & Henley (1983) Auerbach, Flambaum & Spevak (1996) Engel, Friar & Hayes (2000) - = (|a - |b)/2 + = (|a + |b)/2 55 keV |a |b Parity doublet Enhancement Factor: EDM (225Ra) / EDM (199Hg) Skyrme Model Isoscalar Isovector Isotensor SkM* 110 800 160 SLy4 230 2800 400 EDM of Hg, Ra…, Dzuba, Flambaum, Ginges, Kozlov, PRA (2002) Schiff moment of 199Hg, de Jesus & Engel, PRC (2005) Schiff moment of 225Ra, Dobaczewski & Engel, PRL (2005) Fully self-consistent calculations…, Ban et al. (2010)

225Ra Source Rare Isotope Facility b a a,b 229Th 7300 yr 225Ra 15 days 225Ac 10 days Fr, At, Rn… ~ 4 hours 209Bi stable • 2 mCi (or 60 ng) 225Ra sources available from Oak Ridge National Lab -- competing with cancer therapies using 213Bi, 225Ac • Test source: 300 nCi 226Ra (1600 yr) -- invaluable for testing • Ra(NO3)2 reduced by Ba metal and Al in 700 C oven Rare Isotope Facility Yield for 225Ra ~ 1010 - 1012 s-1

Statistical uncertainty: Transverse cooling Oven: 225Ra Zeeman Slower Magneto-optical Trap (MOT) Optical dipole trap (ODT) EDM measurement EDM measurement on 225Ra Statistical uncertainty: 100 kV/cm 10 s 104 10% 10 days dd = 3 x 10-26 e cm Ra / Hg Enhancement factor ~ 102 -103 dd(199Hg) = 1.5 x 10-29 e cm

Radium Atom Energy Level Diagram 6 ns Radium Atom Energy Level Diagram 7p 1P1° 1e-1 V. Dzuba, V. Flambaum et al., PRA 61 (2000) 1429 nm, repump, diode laser 0.4 ms Single photon kick  dv = 3 mm/s No repump, 20k cycles. With repump, 20M cycles. 6d 1D2 2e-6 6 ms 5e-2 7p 3P2° 5e-4 6d 3D3 483 nm 5e-2 2e-2 420 ns 7e-10 70 2e-2 7p 3P1° 6d 3D2 4e-5 2e-3 1 0.7 ms 714 nm, cycling, Ti:S ring laser 6e-4 6d 3D1 7p 3P0° Linewidth ~ 400 kHz. kBT = hG Doppler cooling limit 7 mK, 14 mm/s 7s2 1S0

Radium Atom Repump Dynamics 2000 cm-1 N() Blackbody spectrum @ 298K (kBT/hc) = 210cm-1) 2.2 E2 7.4 E1 3.4 E1 298 K thermal transition rates 1429nm Repumping to 1P1 482nm 3P1 9.9 E1 3D1 Laser-cooling 0.6 ms 1.5 E3 3P0 0.4 mm 3,000 trapped radium atoms 1S0

EDM in an optical dipole trap Fiber laser: l = 1550 nm, Power = 40 Watts Focused to 100 mm  trap depth 350 mK EDM in an optical dipole trap v x E , Berry’s phase effects suppressed Cold scattering suppressed between cold Fermionic atoms Rayleigh scat. rate ~ 10-1 s-1 ; Raman scat. rate ~ 10-12 s-1 Conclusion: possible to reach 10-30 e cm for 199Hg ---- Fortson & Romalis, PRA (1999)

Radium trapping and measurements Magneto-optical trap (MOT) of radium realized [Guest et al. PRL 2007]; Key atomic properties determined; Lifetimes of 3P1 [Scielzo, PRA 2006] and 1D2 [Trimble, PRA 2009]; Optical dipole trap (ODT) of radium realized (2010); MOT to ODT transfer efficiency reaching 80%. MOT 0.4 mm 3,000 atoms MOT & ODT Head-on view Sideview MOT 0.4 mm ODT 0.04 mm

Radium EDM Setup 10W

B-Field: Shields, Coils, Magnetometers Design Goal B = 10 mG Stability: < 1 ppm in 100 sec Uniformity: < 1% / cm m-shields: Shielding factor = 2 x 104 Rb cell magnetometer: Budker design B gradient < 10 μG/cm

E-Field: 100 kV / cm -- Done. 20 kV over 2mm vacuum gap < 50 pA leakage currents observed

Go to ”Insert (View) | Header and Footer" to add your organization, sponsor, meeting name here; then, click "Apply to All"

Statistical uncertainty: Transverse cooling Oven: 225Ra Zeeman Slower Magneto-optical trap Optical dipole trap EDM measurement EDM measurement on 225Ra Statistical uncertainty: 100 kV/cm 10 s 104 10% 10 days dd = 3 x 10-26 e cm 100 s 106 100 days dd = 3 x 10-28 e cm Phase II Ra / Hg enhance factor ~ 102 -103 dd(199Hg) = 1.5 x 10-29 e cm

Blue Trap Upgrade Present trap scheme (total of 4 lasers) 7p 1P1 Trap, 714 nm 7s2 1S0 7p 3P1 420 ns 6 ns 6d 3D1 Pump #1 6d 1D2 430 ms 6d 3D2 Trap, 483 nm Pump #2 Pump #3 Blue trap scheme (total of 8 lasers) First trap laser: 483 nm (strong); Second trap laser: 714 nm; 3 repumpers: 1428 nm, 1488 nm, 2.75 mm; Laser trapped 171Yb as co-magnetometer. 399 nm, 556 nm 100 times more trapped atoms; Improved control on systematics; EDM sensitivity: 10-28 e-cm. Present trap scheme (total of 4 lasers) Trap laser: 714 nm (weak); One repump laser: 1428 nm (#1); External Rb cell magnetometers: 780 nm. Too full, reduce info on transitions

M. Kalita , W. Korsch, Z.-T. Lu, P. Mueller, and T. P. O’Connor Argonne Atom Trappers I. A. Sulai, W. L. Trimble, R. H. Parker, K. Bailey, J. P. Greene, R. J. Holt, M. Kalita , W. Korsch, Z.-T. Lu, P. Mueller, and T. P. O’Connor Argonne & U Kentucky

Rb Magnetometry Coil Shields B Rb B Rb Ra-225

3P1 3D1 3P0 Blackbody repumping 654 s Repump OFF Repump ON Repumping to 1P1 (482nm photon) Laser-cooling 3.4 E1 298 K thermal transition rates 654 s

EDM Systematics and noise Environmental sources MOT & Zeeman slower Leakage current between electrodes Motional field (1/c2 v x E) Geometric phase E-quadrupole terms + incomplete E-reversal Trap location moves Cold collisions Current supply noise Optical dipole trap effects Zeeman-like light shift E1-M1 interference term Monitor and control Optical dipole trap Standing wave Linear polarization E parallel B E, B perpendicular to polarization Magnetic field monitor and control m-shields shielding factor = 2 x 104 B-gradient < 10 μG/cm B-instability < 1 ppm in 100 s B-field monitor and cancellation using magnetometers External Rb vapor cells, 5 cm away Co-trapped 171Yb atoms, co-magnetometer and null-EDM, < 50 mm apart Many reversals B field E field polarization detection phase Go to "View | Header and Footer" to add your organization, sponsor, meeting name here; then, click "Apply to All"

The Seattle EDM Measurement 199Hg stable, high Z, J = 0, I = ½, high vapor pressure E E Courtesy of Michael Romalis The best limit on atomic EDM EDM (199Hg) < 3 x 10-29 e-cm Griffith et al., Phys Rev Lett (2009) +e -e cm Unit EDM

Table of Elements 1S0

Experiment seems feasible with modest (< 10 mCi) 225Ra sources. Stern man Geiger counter Special thanks to our health physicists Paul Niquette and Lee Sprouse.

226Ra and 225Ra Hyperfine constants and isotope shift on 3D1 - 1P1 3/2 -> 3/2 Ra-226 Ra-225 F 540(4) MHz 1P1 3/2 1/2 4196(2) MHz ISOLDE: 4195(4) MHz* 6999.83 cm-1 3/2 3D1 1/2 -> 3/2 3/2 -> 1/2 1/2 -> 1/2 1/2 7031(2) MHz *Ahmad et al., Phys. Lett. 133B, 47 (1983)

Atom traps at Argonne He Ra Kr q ne b 6He 6Li Nuclear New Standard Structure New Standard Model He Ra Kr 6He ne 6Li + b - q New Standard Model Applications 24

Argonne National Laboratory Google: atom trap Email: lu@anl.gov