1 Events and Their Probabilities Folks often want to know the probability of an event so they can plan their day (or whatever)

Slides:



Advertisements
Similar presentations
Basic Concepts of Probability Probability Experiment: an action,or trial through which specific results are obtained. Results of a single trial is an outcome.
Advertisements

1 Conditional Probability. 2 As we have seen, P(A) refers to the probability that event A will occur. P(A|B) refers to the probability that A will occur.
Copyright © 2010, 2007, 2004 Pearson Education, Inc. Chapter 14 From Randomness to Probability.
Probability.
Birthday Problem What is the smallest number of people you need in a group so that the probability of 2 or more people having the same birthday is greater.
1 Chapter 3 Probability 3.1 Terminology 3.2 Assign Probability 3.3 Compound Events 3.4 Conditional Probability 3.5 Rules of Computing Probabilities 3.6.
From Randomness to Probability
Chapter 4 Introduction to Probability
Chapter 4 Introduction to Probability
Section 5.2 Probability Rules
Chapter 5: Probability: What are the Chances?
Chapter 5: Probability: What are the Chances?
1 Section 1.7 Set Operations. 2 Union The union of 2 sets A and B is the set containing elements found either in A, or in B, or in both The denotation.
Events and their probability
Slide Slide 1 Copyright © 2007 Pearson Education, Inc Publishing as Pearson Addison-Wesley. Created by Tom Wegleitner, Centreville, Virginia Section 4-3.
Describing Events Adapted from Walch Education Key Concepts A set is a list or collection of items. Set A is a subset of set B, denoted by A ⊂ B, if.
10/1/20151 Math a Sample Space, Events, and Probabilities of Events.
Math 409/409G History of Mathematics
Copyright © 2010 by The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin Chapter 4 Probability.
C HAPTER 4 - P ROBABILITY. I NTRODUCTORY V OCABULARY Random (trials) – individual outcomes of a trial are uncertain, but when a large number of trials.
The Practice of Statistics, 5th Edition Starnes, Tabor, Yates, Moore Bedford Freeman Worth Publishers CHAPTER 5 Probability: What Are the Chances? 5.2.
Probability Introduction Examples Key words Practice questions Venn diagrams.
1 1 Slide © 2003 Thomson/South-Western. 2 2 Slide © 2003 Thomson/South-Western Chapter 4 Introduction to Probability n Experiments, Counting Rules, and.
+ The Practice of Statistics, 4 th edition – For AP* STARNES, YATES, MOORE Chapter 5: Probability: What are the Chances? Section 5.2 Probability Rules.
From Randomness to Probability Chapter 14. Dealing with Random Phenomena A random phenomenon is a situation in which we know what outcomes could happen,
1 1 Slide © 2004 Thomson/South-Western Assigning Probabilities Classical Method Relative Frequency Method Subjective Method Assigning probabilities based.
Chapter 4, continued.... III. Events and their Probabilities An event is a collection of sample points. The probability of any one event is equal to the.
1 1 Slide © 2007 Thomson South-Western. All Rights Reserved Chapter 4 Introduction to Probability Experiments, Counting Rules, and Assigning Probabilities.
Probability: Terminology  Sample Space  Set of all possible outcomes of a random experiment.  Random Experiment  Any activity resulting in uncertain.
BIA 2610 – Statistical Methods
PROBABILITY BINGO STAAR REVIEW I am based on uniform probability. I am what SHOULD happen in an experiment.
The Practice of Statistics, 5th Edition Starnes, Tabor, Yates, Moore Bedford Freeman Worth Publishers CHAPTER 5 Probability: What Are the Chances? 5.2.
4-3 Addition Rule This section presents the addition rule as a device for finding probabilities that can be expressed as P(A or B), the probability that.
+ Unit 5: Probability: What are the Chances? Lesson 2 Probability Rules.
AP Statistics Section 6.2 B Probability Rules. If A represents some event, then the probability of event A happening can be represented as _____.
Probability theory is the branch of mathematics concerned with analysis of random phenomena. (Encyclopedia Britannica) An experiment: is any action, process.
Experiments, Outcomes and Events. Experiment Describes a process that generates a set of data – Tossing of a Coin – Launching of a Missile and observing.
Copyright © 2010, 2007, 2004 Pearson Education, Inc. Lecture Slides Elementary Statistics Eleventh Edition and the Triola Statistics Series by.
Union and Intersection of Sets. Definition - intersection The intersection of two sets A and B is the set containing those elements which are and elements.
G: SAMPLING WITH AND WITHOUT REPLACEMENT H: SETS AND VENN DIAGRAMS CH 22GH.
Probability Probability II. Opening Routine # 1.
+ Section 5.2 Probability Rules After this section, you should be able to… DESCRIBE chance behavior with a probability model DEFINE and APPLY basic rules.
Lecture Slides Elementary Statistics Twelfth Edition
Chapter 3 Probability.
Chapter 5: Probability: What are the Chances?
Unit 4 Probability Basics
Chapter 5: Probability: What are the Chances?
Chapter 5: Probability: What are the Chances?
Probability Union Intersection Complement
Warmup The chance of winning a prize from Herff- Jones is 1/22. How would you set up a simulation using the random number table to determine the probability.
Chapter 2 Probability Sample Spaces and Events
Chapter Sets &Venn Diagrams.
Chapter 5: Probability: What are the Chances?
Chapter 5: Probability: What are the Chances?
How to Interpret Probability Mathematically, the probability that an event will occur is expressed as a number between 0 and 1. Notationally, the.
Chapter 5: Probability: What are the Chances?
Mrs.Volynskaya Alg.2 Ch.1.6 PROBABILITY
Chapter 5: Probability: What are the Chances?
Chapter 5: Probability: What are the Chances?
Chapter 5: Probability: What are the Chances?
Chapter 6: Probability: What are the Chances?
Chapter 5: Probability: What are the Chances?
Chapter 5: Probability: What are the Chances?
Chapter 5: Probability: What are the Chances?
Chapter 5: Probability: What are the Chances?
Chapter 5: Probability: What are the Chances?
Chapter 5: Probability: What are the Chances?
Unit 6: Probability: What are the Chances?
An Introduction to….
Presentation transcript:

1 Events and Their Probabilities Folks often want to know the probability of an event so they can plan their day (or whatever)

2 Remember from a previous section that an experiment has sample points. I think it is good to say that each sample point is mutually exclusive. In other words, on any given trial of the experiment one and only one sample point can result (it could be different for each subject, but each subject has only one). An event is a specific collection of sample points or experimental outcomes. An event is said to occur if any one of the specific sample points results. Example: Say when you go to a vending machine and buy a bag of M&M’s, the bag has 40 pieces inside and the colors in the bag are red, brown, blue, orange, yellow and green (I can not remember the real colors and amount anymore - I have not purchased them lately !) An event might be when you open the bag, the first color out is yellow. Another event might be the first color out is red or blue.

3 (Bells and whistles are blaring because the following is an important idea.) The probability of any event is equal to the sum of the probabilities of the sample points in the event. Say by the relative frequency approach we know in the M&M example that P(red) = 4/40, P(brown) = 10/40, P(blue) = 8/40, P(orange) = 8/40, P(yellow) = 4/40 and P(green) = 6/40. A special event is the sample space. In other words, what is the probability that the first one out is red, brown, blue, orange, yellow or green? The probability here is 4/ /40 + 8/40 + 8/40 + 4/40 + 6/40 = 1.

4 What is the probability the first M&M out of the bag is not brown? Not brown means red, blue, orange, yellow, or green. So, P(not brown) = P(reb) + P(blue) + P(orange) + P(yellow) + P(green) = 4/40 + 8/40 + 8/40 + 4/40 + 6/40 = 30/40 =.75. Say event A is the situation that either of my two favorite M&M’s comes out first - red or yellow. Also say event B is that either of your two favorite M&M’s comes out - red or blue. P(A) = P(red) + P(yellow) = 4/40 + 4/40 = 8/40 =.2 P(B) = P(red) + P(blue) = 4/40 + 8/40 = 12/40 =.3

5 Now, in the last example on the previous slide, red was part of both events A and B. Both events A and B would occur if red occurred. The intersection of events is itself an event that has sample points that are in both the original events. So, the intersection of A and B is red and P(red) =.1 The union of events is also an event, but it is an event that lists once each sample point from either of the original events. The union of A and B would have red, yellow and blue as the sample points involved and the probability is P(red) + P(yellow) + P(blue) = =.4

6 Back on slide three I had the following sentence. The probability of any event is equal to the sum of the probabilities of the sample points in the event. In theory, this method can always be used to find the probability of an event. In fact, I have really relied on it up to this point. But, sometimes this method is difficult to apply and so we use some other rules of probability to assist us in finding the probability of an event. The Complement of an Event Say event A is well defined. The complement of A is the event consisting of all points not in A and is denoted A c. By definition, P(A) + P(A c ) = 1. This may be useful to find the P(A) because P(A) = 1 - P(A c ), or to find P(A c ) = 1 - P(A). What is the probability the first M&M out of the bag is not brown? P(not Brown) = 1 - P(Brown) = =.75

7 Unions and Intersections An event can be a “mixture” of other events. Say we have events A and B. The union of events A and B, written A ∪ B, is an event that includes all sample points belonging to A or B. The intersection of events A and B, written A ∩ B, is an event that includes all sample points belonging to both A and B. A BI have used two circles to represent the events, as Mr. Venn did with his diagram many moons ago. Note here that A and B overlap. All the points inside the box represent all the outcomes of the experiment.

8 Note on the previous screen I write The union of events A and B The intersection of events A and B I write A and B, but the context of the problem will require the use of the union or the intersection. The union really means is the experimental outcome in either A or B. When you look at the Venn Diagram, the union is combing all of circle A and all of circle B. But, with the overlap in my diagram, you would not include this overlap area twice. The intersection really means is the experimental outcome in both A and B. The intersection is just the overlap I mentioned above with the union.

9 Say event A is the situation that either of my two favorite M&M’s comes out first - red or yellow. Also say event B is that either of your two favorite M&M’s comes out - red or blue. Now, using the idea that the probability of any event is equal to the sum of the probabilities of the sample points in the event, we note P(A) = P(red) + P(yellow) = =.2, and P(B) = P(red) + P(blue) = =.3 Now P(A ∩ B) = P(red) =.1, because red is the only one in both.

10 Before I showed P(A ⋃ B) = P(red) + P(yellow) + P(blue) = =.4 But, in general we write P(A ⋃ B) = P(A) + P(B) - P(A ∩ B). This is the additional law for the union of events. In the example both P(A) and P(B) include P(red), but since we only want to include it once we subtract out the intersection. P(A ⋃ B) = =.4.

11 If two events are mutually exclusive, then the events have no overlap. This means that P(A ∩ B) = 0, and thus the union of mutually exclusive events is just P(A) + P(B). Say E1, E2, E3, E4, and E5 are all equally likely outcomes and we have events A, B, and C such that A={E1, E2}, B={E3, E4} and C={E2, E3, E5}. Then a. P(A) = P(E1) + P(E2) = =.4 (remember The probability of any event is equal to the sum of the probabilities of the sample points in the event.), P(B) = P(E3) + P(E4) =.4, and P(C) = P(E2) + P(E3) + P(E5) =.6 b. P(A ∪ B) = P(A) + P(B) =.8, since A and B are mutually exclusive. c. A c = {E3, E4, E5} and P(A c ) = 1 - P(A) =.6, C c = {E1, E4}, P(C c ) = 1 - P(C) =.4. d. P(A υ B c ) = =.6 e. P(B ∪ C) = =.8