The partition function of fluxed M5-instantons in F-theory Max Kerstan ITP, Universität Heidelberg String Phenomenology 2012, Cambridge Based on work with.

Slides:



Advertisements
Similar presentations
Stokes Phenomena and Non-perturbative Completion in the multi-cut matrix models Hirotaka Irie (NTU) A collaboration with Chuan-Tsung Chan (THU) and Chi-Hsien.
Advertisements

C AN WE CONSTRAIN MODELS FROM THE STRING THEORY BY N ON - GAUSSIANITY ? APCTP-IEU Focus Program Cosmology and Fundamental Physics June 11, 2011 Kyung Kiu.
Hodge Theory Complex Manifolds. by William M. Faucette Adapted from lectures by Mark Andrea A. Cataldo.
Analysis of QCD via Supergravity S. Sugimoto (YITP) based on hep-th/ (T. Ibaraki + S.S.) Windows to new paradigm in particle Sendai.
 Symmetries and vanishing couplings in string-derived low-energy effective field theory              Tatsuo Kobayashi 1.Introduction.
Martín Schvellinger Instituto de Física de La Plata - CONICET Departamento de Física - UNLP The gauge/gravity duality and Non-Relativistic Quantum Field.
Toward M5-branes from ABJM action Based on going project with Seiji Terashima (YITP, Kyoto U. ) Futoshi Yagi (YITP, Kyoto U.)
On d=3 Yang-Mills-Chern- Simons theories with “fractional branes” and their gravity duals Ofer Aharony Weizmann Institute of Science 14 th Itzykson Meeting.
Calabi-Yau compactifications: results, relations & problems
Brane-World Inflation
Instantons in Deformed Supersymmetric Gauge Theories Shin Sasaki (University of Helsinki) Based on the work [hep-th/ JHEP 07 (2007) 068 ] [hep-th/ ,
Type IIB Supergravity, D3 branes and ALE manifolds
Summing planar diagrams
SUSY Breaking in Local String Models J.P. Conlon, A. Maharana, FQ arXiv: [hep-th] ] R. Blumenhagen, J.P. Conlon, S. Krippendorf, S.Moster, FQ.
Construction of BPS Solitons via Tachyon Condensation So RIKEN based on the work with T. Asakawa and K. Ohta hep-th/0603***
Noncommutative Geometries in M-theory David Berman (Queen Mary, London) Neil Copland (DAMTP, Cambridge) Boris Pioline (LPTHE, Paris) Eric Bergshoeff (RUG,
Non-perturbative effects in string theory compactifications Sergey Alexandrov Laboratoire Charles Coulomb Université Montpellier 2 in collaboration with.
M-Theory & Matrix Models Sanefumi Moriyama (NagoyaU-KMI) [Fuji+Hirano+M 1106] [Hatsuda+M+Okuyama 1207, 1211, 1301] [HMO+Marino 1306] [HMO+Honda 1306] [Matsumoto+M.
AdS4/CFT3 correspondence and Chern-Simons gauge theories Jaemo Park (Postech ) Yong Pyong TexPoint fonts used in EMF. Read the TexPoint manual.
Toward a Proof of Montonen-Olive Duality via Multiple M2-branes Koji Hashimoto (RIKEN) 25th Sep conference “Recent Developments in String/M.
Summing Up All Genus Free Energy of ABJM Matrix Model Sanefumi Moriyama (Nagoya U) JHEP [arXiv: ] with H.Fuji and S.Hirano.
The Topological G 2 String Asad Naqvi (University of Amsterdam) (in progress) with Jan de Boer and Assaf Shomer hep-th/0506nnn.
Solitons in Matrix model and DBI action Seiji Terashima (YITP, Kyoto U.) at KEK March 14, 2007 Based on hep-th/ , and hep-th/ ,
Multi-Brane Recombination and Standard Model Flux Vacua Jason Kumar Texas A&M University w/ James D. Wells (University of Michigan) hep-th/ ,
Heterotic strings and fluxes Based on: K. Becker, S. Sethi, Torsional heterotic geometries, to appear. K. Becker, C. Bertinato, Y-C. Chung, G. Guo, Supersymmetry.
Anomaly cancellations on heterotic 5-branes ( 前編 ) 矢田 雅哉.
A 5d/2d/4d correspondence Babak Haghighat, Jan Manschot, S.V., to appear; B. Haghighat and S.V., arXiv:
Summing the Instantons in the Heterotic String Jock McOrist University of Chicago , with Ilarion Melnikov October 28 th, Rutgers University.
Random Matrix Theory Workshop NBIA May 2007 Large N double scaling limits in Gauge Theories and Matrix Models Gaetano Bertoldi Swansea University.
Matrix factorisations and D-branes Matthias Gaberdiel ETH Zürich Cambridge, 3 April 2006.
Planar diagrams in light-cone gauge hep-th/ M. Kruczenski Purdue University Based on:
Meta-stable Vacua in SQCD and MQCD David Shih Harvard University K. Intriligator, N. Seiberg and DS hep-th/ I. Bena, E. Gorbatov, S. Hellerman,
Excited QCD 2010, February 3 (Tatra National Park, 2010) Holographic Models for Planar QCD without AdS/CFT Correspondence Sergey Afonin Ruhr-University.
Wall Crossing and an Entropy Enigma Work done with Frederik Denef hep-th/ arXiv: TexPoint fonts used in EMF: AA A A A A A AA A A A Strings.
Holographic Description of Quantum Black Hole on a Computer Yoshifumi Hyakutake (Ibaraki Univ.) Collaboration with M. Hanada ( YITP, Kyoto ), G. Ishiki.
Exact Results for perturbative partition functions of theories with SU(2|4) symmetry Shinji Shimasaki (Kyoto University) JHEP1302, 148 (2013) (arXiv: [hep-th])
L.I. Petrova “Specific features of differential equations of mathematical physics.” Investigation of the equations of mathematical physics with the help.
Measuring The Elliptic Genus Gregory Moore Rutgers AndyFest, Harvard, July 31, 2015.
Uniform discretizations: the continuum limit of consistent discretizations Jorge Pullin Horace Hearne Institute for Theoretical Physics Louisiana State.
Algebroids, heterotic moduli spaces and the Strominger system James Gray, Virginia Tech Based on work with: Alexander Haupt and Andre Lukas ????
The embedding-tensor formalism with fields and antifields. Antoine Van Proeyen K.U. Leuven Moscow, 4th Sakharov conf., May 21, 2009.
HIGHER SPIN SUPERGRAVITY DUAL OF KAZAMA-SUZUKI MODEL Yasuaki Hikida (Keio University) Based on JHEP02(2012)109 [arXiv: [hep-th]]; arXiv:
Gauge Fields, Knots and Gravity Wayne Lawton Department of Mathematics National University of Singapore (65)
The Geometry of Moduli Space and Trace Anomalies. A.Schwimmer (with J.Gomis,P-S.Nazgoul,Z.Komargodski, N.Seiberg,S.Theisen)
Z THEORY Nikita Nekrasov IHES/ITEP Nagoya, 9 December 2004.
Introduction to Strings Yoshihisa Kitazawa KEK Nasu lecture 9/25/06.
Heterotic—F Theory Duality Revisited
Laboratoire Charles Coulomb
Is the four-dimensional effective theory effective? YITP Hideo Kodama HK and Kunihito Uzawa, JHEP0507:061(2005) HK and Kunihito Uzawa, hep-th/
2011 年 4 月 27 日 1 吉田豊 Y. Yoshida arXiv: [hep-th]
Torsional heterotic geometries Katrin Becker ``14th Itzykson Meeting'' IPHT, Saclay, June 19, 2009.
Holomorphic Anomaly Mediation Yu Nakayama (Caltech) arXiv: and to appear.
On String Theory Duals of Lifshitz-like Fixed Point Tatsuo Azeyanagi (Kyoto University) Based on work arXiv: (to appear in JHEP) with Wei Li (IPMU)
Marginally Deformed Gauge Theories from Twistor String Theory Jun-Bao Wu (SISSA) based on work with Peng Gao hep-th/ v3 KITPC Beijing, October 18,
Holographic Description of Quantum Black Hole on a Computer Yoshifumi Hyakutake (Ibaraki Univ.) Collaboration with M. Hanada ( YITP, Kyoto ), G. Ishiki.
Mirjam Cvetič Non-perturbative effects in F- Theory Compactifications.
P-Term Cosmology A.C. Davis (with C. Burrage) ,
Andrej Ficnar Columbia University Hard Probes 2010, Eilat, Israel October 12, 2010 Nonconformal Holography of Heavy Quark Quenching Andrej Ficnar, Jorge.
1 Marginal Deformations and Penrose limits with continuous spectrum Toni Mateos Imperial College London Universitat de Barcelona, December 22, 2005.
Equivariant A-twisted GLSM and Gromov-Witten invariants
Dept.of Physics & Astrophysics
STRING THEORY AND M-THEORY: A Modern Introduction
Kähler Moduli Inflation
Weak Interacting Holographic QCD
String coupling and interactions in type IIB matrix model arXiv:0812
Hyun Seok Yang Center for Quantum Spacetime Sogang University
Heterotic strings and fluxes: status and prospects
Quantum Two.
Gauge invariant flow equation
Masakazu Sano Hokkaido University
Presentation transcript:

The partition function of fluxed M5-instantons in F-theory Max Kerstan ITP, Universität Heidelberg String Phenomenology 2012, Cambridge Based on work with T. Weigand [arXiv: ]

Outline 1.Motivation 2.The problem of determining the partition function of M5- instantons in M-theory 3.Obtaining the partition function from auxiliary action via holomorphic factorisation 4.The partition function of O(1) E3-instantons 5.Uplift and match of the partition functions 6.Summary and open questions

Motivation and formulation of the problem Instantons play important role e.g. with regards to moduli stabilisation. In particular E3-instantons in Type IIB well- studied and well-understood. In F-theory, analogue of these E3-instantons given by M5- instantons wrapped on vertical divisors of elliptic fourfold. M5-instantons much harder to study directly: No microscopic theory difficult to study zero modes Supergravity action of M5-brane complicated due to presence of self-dual 2-form No easy way to study effect of one given instanton configuration But: can study partition function, including sum over all configurations of instanton flux.

The partition function of a chiral 2-form Full covariant action of chiral 2-form requires auxiliary fields Witten’s prescription: Take alternative non-chiral action and calculate partition function Result can be factorised into sum of terms, where each term is product of a chiral and an anti-chiral part Partition function of chiral 2-form given by chiral factor of one of these summands Terms in the sum correspond to choice of line bundle on the intermediate Jacobian of the M5-brane Correct summand can be identified using Chern-Simons interaction on auxiliary 7-manifold with boundary on the M5 [Pasti, Sorokin, Tonin ’96] [Witten ’96]

Identifying the partition function via duality with Type IIB Consider M5-instanton on vertical divisor in F-theory dual to Type IIB E3-instanton on base divisor Partition function of E3-instanton unambiguous; can be used to identify M5-instanton partition function Procedure: First compute non-chiral (classical) partition function

Factorisation of non-chiral partition function Result admits holomorphic factorisation after Poisson resummation Here: Indices M, N = 1,…, : fixed vectors with entries 0, 1/2 that label choice of line bundle on the intermediate Jacobian [Henningsson, Nilsson, Salomonsson ’98]

Partition function of O(1) E3-instanton Partition function of O(1) E3-instanton straightforward to determine by summing over Here: Indices M, N = 1,…, Small indices m, n run over subspace that is induced by pullback from ambient space [Grimm, MK, Palti, Weigand ’11]

Match of partition functions Uplift clear for O(1) instanton on rigid, isolated divisor Then: Furthermore we must set. Match with the Type IIB expression allows us to read off the correct chiral partition function of the M5-instanton

Summary and open questions Identification of partition function of M5-instantons difficult directly in M- or F-theory Correct chiral partition function can be determined via duality with Type IIB E3-instantons Result does not depend on the precise properties of the instanton divisor We therefore expect that identification is unchanged if the instanton divisor is non-rigid or not isolated However, in this case contains extra elements that are not in the uplift of Open question: What is the F-term mechanism that restricts flux on the M5-instanton to the uplift of ?

Summary and open questions If the instanton has non-trivial intersection with D7-branes, there is evidence that some forms in uplift to non- harmonic forms in F-theory What does this imply for the partition function of the M5- instanton? Does one have to include non-harmonic fluxes in the partition sum? If so, how are these identified directly in F-theory without making use of the Type IIB limit? How to uplift U(1) instantons, and in particular fluxes with even orientifold parity? How does our result appear in Witten’s construction? Does it apply also to instantons on divisors that are not vertical? [Grimm, MK, Palti, Weigand ’11]