Marcelo Takeshi Yamashita Instituto de Física Teórica – IFT / UNESP.

Slides:



Advertisements
Similar presentations
APRIL 2010 AARHUS UNIVERSITY Simulation of probed quantum many body systems.
Advertisements

The Kinetic Theory of Gases
Three -cluster description of the 12 C nucleus A.V. Malykh (JINR, BLTP) The work was done in collaboration with O.I. Kartavtsev, S.I. Fedotov.
1 Eta production Resonances, meson couplings Humberto Garcilazo, IPN Mexico Dan-Olof Riska, Helsinki … exotic hadronic matter?
Spectroscopy at the Particle Threshold H. Lenske 1.
Early Quantum Theory and Models of the Atom
Possible existence of neutral hyper-nucleus with strangeness -2 and its production SPN 2014, Changsha, Dec , 2014 Institute of High Energy Physics.
The University of Tokyo
Axel Pérez-Obiol, Assumpta Parreño and Bruno Juliá-Díaz Departament ECM, Facultat de Física, Universitat de Barcelona, Spain.
Unified Description of Bound and Unbound States -- Resolution of Identity -- K. Kato Hokkaido University Oct. 6, 2010 KEK Lecture (2)
Making cold molecules from cold atoms
Numerical Studies of Universality in Few-Boson Systems Javier von Stecher Department of Physics and JILA University of Colorado Probable configurations.
Coupled-Channel analyses of three-body and four-body breakup reactions Takuma Matsumoto (RIKEN Nishina Center) T. Egami 1, K. Ogata 1, Y. Iseri 2, M. Yahiro.
1 - as a function of:electron energy scattering angle - wide angular range - accurate - elastic & inelastic N 2, CH 4, cyclopropane The Art of Measuring.
Universality in ultra-cold fermionic atom gases. with S. Diehl, H.Gies, J.Pawlowski S. Diehl, H.Gies, J.Pawlowski.
Free Quarks versus Hadronic Matter Xiao-Ming Xu. picture below the critical temperature T c.
November INT-JLab Workshop Amplitude analysis for three- hadron states: Historical perspective Ian Aitchison INT-JLab Workshop, UW Nov
Bound-Free Electron-Positron Pair Production Accompanied by Coulomb Dissociation M. Yılmaz Şengül Kadir Has University & İstanbul Technical University.
The noise spectra of mesoscopic structures Eitan Rothstein With Amnon Aharony and Ora Entin University of Latvia, Riga, Latvia.
Lecture 5: Electron Scattering, continued... 18/9/2003 1
Systémes à petit nombre de corps (Few-body systems) IPHC Strasbourg, France Rimantas Lazauskas, IPHC Strasbourg, France.
System and definitions In harmonic trap (ideal): er.
The Theory of Partial Fusion A theory of partial fusion is used to calculate the competition between escape (breakup) and absorption (compound-nucleus.
ATOM-ION COLLISIONS ZBIGNIEW IDZIASZEK Institute for Quantum Information, University of Ulm, 20 February 2008 Institute for Theoretical Physics, University.
J/ψ - bound nuclei and J/ψ - nucleon interaction Akira Yokota Tokyo Institute of Technology Collaborating with Emiko Hiyama a and Makoto Oka b RIKEN Nishina.
横田 朗A 、 肥山 詠美子B 、 岡 眞A 東工大理工A、理研仁科セB
Three-body recombination at vanishing scattering lengths in ultracold atoms Lev Khaykovich Physics Department, Bar-Ilan University, Ramat Gan, Israel.
Efimov Physics in a Many-Body Background
Few-body physics with ultracold fermions Selim Jochim Physikalisches Institut Universität Heidelberg.
FB-18, Santos, Brazil 1 Experimental State of n-n Correlation Function for Borromean halo Nuclei Investigation Presented by: M. Petrascu HH-NIPNE, Bucharest.
Nucleon: T = ½, m t =  ½. For a nucleus, by extension: m t = ½ (Z - N). If neutrons and protons are really “identical” as far as the strong interaction.
Chiral condensate in nuclear matter beyond linear density using chiral Ward identity S.Goda (Kyoto Univ.) D.Jido ( YITP ) 12th International Workshop on.
Takuma Matsumoto (Kyushu Univ.) K. Minomo, K. Ogata a, M. Yahiro, and K. Kato b (Kyushu Univ, a RCNP, b Hokkaido Univ) Description for Breakup Reactions.
Efimov Physics with Ultracold Atoms Selim Jochim Max-Planck-Institute for Nuclear Physics and Heidelberg University.
Experimental study of Efimov scenario in ultracold bosonic lithium
Triatomic states in ultracold gases Marcelo Takeshi Yamashita Universidade Estadual Paulista - Brazil  Lauro Tomio – IFT / Unesp  Tobias Frederico –
M. Matsuo, PRC73(’06) Matter Calc. Two-particle density.
Resonance Scattering in optical lattices and Molecules 崔晓玲 (IOP, CASTU) Collaborators: 王玉鹏 (IOP), Fei Zhou (UBC) 大连.
Efimov physics in ultracold gases Efimov physics in ultracold gases Rudolf Grimm “Center for Quantum Optics” in Innsbruck Austrian Academy of Sciences.
N. Itagaki Yukawa Institute for Theoretical Physics, Kyoto University.
W I S S E N T E C H N I K L E I D E N S C H A F T  Januar 13 Name und OE, Eingabe über > Kopf- und Fußzeile.
Víctor M. Castillo-Vallejo 1,2, Virendra Gupta 1, Julián Félix 2 1 Cinvestav-IPN, Unidad Mérida 2 Instituto de Física, Universidad de Guanajuato 2 Instituto.
Scales of critically stable few-body halo system Tobias Frederico Instituto Tecnológico de Aeronáutica São José dos Campos - Brazil  Marcelo T. Yamashita.
Experimental determination of Universal Thermodynamic Functions for a Unitary Fermi Gas Takashi Mukaiyama Japan Science Technology Agency, ERATO University.
Efimov Effect in 2 n- Core Halo Nuclei V.S.Bhasin Inter University Accelerator Centre, New Delhi and Department of Physics & Astrphysics, University.
NEW TRENDS IN HIGH-ENERGY PHYSICS (experiment, phenomenology, theory) Alushta, Crimea, Ukraine, September 23-29, 2013 Effects of the next-to-leading order.
Physics 361 Principles of Modern Physics Lecture 13.
K - 4 He  3 He, π-, Λ and some consequences S. Wycech – NCBJ – Warsaw.
Breakup of 22 C in a three-body model E. C. Pinilla 1, and P. Descouvemont 2 1 Universidad Nacional de Colombia, Bogotá, Colombia 2 Université Libre de.
Back to basics The three fundamental units G, c, ћ are sufficient to describe all the quantities that appear in physics. They are.
I=1 heavy-light tetraquarks and the Υ(mS) → Υ(nS)ππ puzzle Francisco Fernández Instituto de Física Fundamental y Matemáticas University of Salamanca.
M. Cobal, PIF 2006/7 Feynmann Diagrams. M. Cobal, PIF 2006/7 Feynman Diagrams 
Resonance states of relativistic two-particle systems Kapshai V.N., Grishechkin Yu.A. F. Scorina Gomel State University.
Physics for Scientists and Engineers, 6e
Adiabatic hyperspherical study of triatomic helium systems
Monday, April 13, 2015PHYS , Spring 2015 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture # 19 Monday, April 13, 2015 Dr. Jaehoon Yu Refresher:
Pairing Evidence for pairing, what is pairing, why pairing exists, consequences of pairing – pairing gap, quasi-particles, etc. For now, until we see what.
Agenda Brief overview of dilute ultra-cold gases
Deterministic preparation and control of a few fermion system.
Extremely dilute, but strongly correlated: Experiments with ultracold fermions.
Two-body force in three-body system: a case of (d,p) reactions
Single-particle momentum distributions for bosonic trimer states
Open quantum systems.
Making cold molecules from cold atoms
Particle in a Box.
少数体ケイオン核の課題 August 7, 2008 Y. Akaishi T. Yamazaki, M. Obu, M. Wada.
Infinite Square Well.
Kazuo MUTO Tokyo Institute of Technology
On the analytic structure of the KN - pS scattering amplitudes
R. Lazauskas Application of the complex-scaling
Presentation transcript:

Marcelo Takeshi Yamashita Instituto de Física Teórica – IFT / UNESP

M. R. Hadizadeh IFT D. S. Ventura IFT T. Frederico ITA L. Tomio UFF/IFT A. Delfino UFF MTY IFT F. F. Bellotti ITA

Three-body bound states Three-body sectorEx: Three identical bosons interacting in s-wave Decrease  Some consequences Two-body sector Helium-4 dimer Ex: Two identical bosons interacting in s-wave Decrease Three-body bound states What's Universality? Independence of the potential Two-body scattering length >> range of the potential

Efimov states discovered by Vitaly Efimov in 1970 “Evidence of Efimov quantum states in an ultracold gas of cesium atoms” ! T. Kraemer et al. Nature 440, 315 (2006) Appearance of an effective potential Infinite three-body bound states

Describing universal systems 2: scattering length (a) / two-body energy 3: two-body energy + Scaling function Thomas collapse in 1935 r 0  0 V 0  ∞ E 2  fixed E 3 deepest  ∞ Three-body scale Efimov states Energy ratio between two consecutive states rms hyperradius ratio between two consecutive states 22.7

Three-body bound state equation with zero-range interaction with momentum cutoff momentaenergies Skorniakov and Ter-Martirosian equation (1956) ε2ε2 0 (N = 0, 1, 2,...) Efimov states 1) E 2 tends to zero with Λ fixed – Efimov effect 2) Λ tends to infinity with E 2 fixed – Thomas collapse If E2 ≠ 0: what happens to the Efimov states after they disappear? S.K. Adhikari, A. Delfino, T. Frederico, I.D. Goldman and L. Tomio, Phys. Rev. A 37, 3666 (1988)

Increasing |E 2 | E2E2 E3E3 Im E Re E Im E E3E3 Re E E 3 (resonance) Im E Re E E2E2 E3E3 Im E Re E E 2 bound E3E3 Im E Re E E 2 virtual E2E2 Im E Re E E 3 (virtual state) second Riemann sheet

Subtracted T-matrix Equation Three-body bound state equation for zero-range interaction with subtraction S.K. Adhikari, T. Frederico and I.D. Goldman, Phys. Rev. Lett. 74, 487 (1995) M.T. Yamashita, T. Frederico, A. Delfino and L. Tomio, Phys. Rev. A 66, (2002)

Virtual states – extension to the second Riemann sheet Definingwe can write the bound state equation as M.T. Yamashita, T. Frederico, A. Delfino and L. Tomio, Phys. Rev. A 66, (2002)

Then we can write the cut explicitly After integration and defining

We have finally should be outside the cutthus

Efimov states – Bound and virtual states Lines – Bound states crosses – ground squares – first excited diamonds – second excited Symbols – Virtual states circles - refers to the first excited state triangles – refers to the second excited state Appearance of the virtual state (dotted line) The virtual state turns into an excited state (solid line) ε 2 bound

is complex Resonances ε 2 unbound F. Bringas, M.T. Yamashita and T. Frederico Phys. Rev. A 69, (R) (2004)

Efimov states - Resonances ε 2 virtual

Full trajectory of Efimov states E3 bound E2 virtual E3 bound E2 bound E3 virtual E2 bound E3 resonance E2 virtual s wave (N=0)s+d waves (N=0) x s wave (N=1) Th. Cornelius, W. Glöckle. J. Chem. Phys. 85, 1 (1996). S. Huber. Phys. Rev. A31, 3981 (1985). x B. D. Esry, C. D. Lin, C. H. Greene. Phys. Rev. A 54, 394 (1996). E. A. Kolganova, A. K. Motovilov e S. A. Sofianos. Phys. Rev. A56, R1686 (1997). T. Frederico, L. Tomio, A. Delfino, M.R. Hadizadeh and M.T. Yamashita, Few Body Syst. (2011) online first

Ground First excited Symbols from P. Barletta and A. Kievsky Phys. Rev. A 64, (2001) squares - Ground state circles - First excited state Potentials: HFDB, LM2M2, TTY, SAPT1, SAPT2 Weakly-bound molecules – Helium trimer M.T. Yamashita, R.S. Marques de Carvalho, L. Tomio and T. Frederico, Phys. Rev. A 68, (2003)

Range correction for bound states D. S. Ventura, M.T. Yamashita, L. Tomio and T. Frederico, in preparation From Kokkelmans presentation

Point where an excited three-body state becomes virtual/bound

The transition bound-virtual does not depend on the particles mass ratio Example: 18 C nn M.T. Yamashita, T. Frederico and L. Tomio, Phys. Lett. B 660, 339 (2008); Phys. Rev. Lett. 99, (2007) n- 18 C: 160 (110) keV boundvirtual 20 C (3.5 MeV)

Root mean square radii Scaling function for the radii  = A or B + two-body bound state - two-body virtual state A B B bound state virtual state

BB bound BB virtual BB bound BB virtual Root mean square radii >>> M.T. Yamashita, L. Tomio and T. Frederico, Nucl. Phys. A 735, 40 (2004)

Thank you! Summary If at least one two-body subsystem is bound: All two-body subsystems are virtual (borromean case): Efimov statevirtual Efimov state resonance Range correction for the point where an excited Efimov state disappears