Element Loads Strain and Stress 2D Analyses Structural Mechanics Displacement-based Formulations.

Slides:



Advertisements
Similar presentations
Finite element method Among the up-to-date methods of stress state analysis, the finite element method (abbreviated as FEM below, or often as FEA for analyses.
Advertisements

AERSP 301 Finite Element Method
Basic FEA Procedures Structural Mechanics Displacement-based Formulations.
1D MODELS Logan; chapter 2.
Beams and Frames.
LECTURE SERIES on STRUCTURAL OPTIMIZATION Thanh X. Nguyen Structural Mechanics Division National University of Civil Engineering
MANE 4240 & CIVL 4240 Introduction to Finite Elements
Some Ideas Behind Finite Element Analysis
By S Ziaei-Rad Mechanical Engineering Department, IUT.
Chapter 17 Design Analysis using Inventor Stress Analysis Module
Lecture 2 – Finite Element Method
Section 4: Implementation of Finite Element Analysis – Other Elements
Finite Element Primer for Engineers: Part 2
Copyright 2001, J.E. Akin. All rights reserved. CAD and Finite Element Analysis Most ME CAD applications require a FEA in one or more areas: –Stress Analysis.
2D Analyses Mesh Refinement Structural Mechanics Displacement-based Formulations.
Matrix Methods (Notes Only)
MECh300H Introduction to Finite Element Methods Finite Element Analysis (F.E.A.) of 1-D Problems – Applications.
Bars and Beams FEM Linear Static Analysis
Finite Element Method Introduction General Principle
FEA Simulations Usually based on energy minimum or virtual work Component of interest is divided into small parts – 1D elements for beam or truss structures.
MANE 4240 & CIVL 4240 Introduction to Finite Elements
MECh300H Introduction to Finite Element Methods
One-Dimensional Problems
ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 12: Isoparametric CST Area Coordinates Shape Functions Strain-Displacement Matrix Rayleigh-Ritz.
MCE 561 Computational Methods in Solid Mechanics
2005 February, 2 Page 1 Finite Element Analysis Basics – Part 2/2 Johannes Steinschaden.
CHAP 4 FINITE ELEMENT ANALYSIS OF BEAMS AND FRAMES
MECH593 Introduction to Finite Element Methods
MANE 4240 & CIVL 4240 Introduction to Finite Elements
MANE 4240 & CIVL 4240 Introduction to Finite Elements
The Finite Element Method
Introduction to virtual engineering László Horváth Budapest Tech John von Neumann Faculty of Informatics Institute of Intelligent Engineering.
2004 March, 4 Page 1 Finite Element Analysis Basics – Part 2/2 Johannes Steinschaden.
ME 520 Fundamentals of Finite Element Analysis
An introduction to the finite element method using MATLAB
1 20-Oct-15 Last course Lecture plan and policies What is FEM? Brief history of the FEM Example of applications Discretization Example of FEM softwares.
MECH593 Finite Element Methods
11/11/20151 Trusses. 11/11/20152 Element Formulation by Virtual Work u Use virtual work to derive element stiffness matrix based on assumed displacements.
Illustration of FE algorithm on the example of 1D problem Problem: Stress and displacement analysis of a one-dimensional bar, loaded only by its own weight,
Lecture #11 Matrix methods.
HEAT TRANSFER FINITE ELEMENT FORMULATION
MECH4450 Introduction to Finite Element Methods
CHAP 3 WEIGHTED RESIDUAL AND ENERGY METHOD FOR 1D PROBLEMS
11 10-Jan-16 Last course Interpretations and properties of the stiffness matrix (cont’d) The DSM for plane and space trusses.
1 TERMINOLOGY ISSUES. 2 The finer is the mesh the better are your results true ?false ? Geometry should be represented as accurately as possible true.
1 HOW MANY ELEMENTS? How to choose element size? –Critically important in obtaining good results –Mesh refinement improves solution accuracy. –How small.
1 CASE STUDY 100lb cr01.sldprt Fixed restraint. 2 But welds crack after one day of use (some 50 load cycles) Why? RPN = R occurrence x R severity x R.
CAD and Finite Element Analysis Most ME CAD applications require a FEA in one or more areas: –Stress Analysis –Thermal Analysis –Structural Dynamics –Computational.
Matrix methods.
AAE 3521 AAE 352 Lecture 08 Matrix methods - Part 1 Matrix methods for structural analysis Reading Chapter 4.1 through 4.5.
MESF593 Finite Element Methods
Algor, the commercial FEM package, an introduction Group: 3 Ian Fulton Timothy Chin James Bernstein Hussain Khersoh.
1 CHAP 3 WEIGHTED RESIDUAL AND ENERGY METHOD FOR 1D PROBLEMS FINITE ELEMENT ANALYSIS AND DESIGN Nam-Ho Kim.
Our task is to estimate the axial displacement u at any section x
Finite Element Method Weak form Monday, 11/4/2002.
Structures Matrix Analysis
Katsuyo Thornton1, R. Edwin García2, Larry Aagesen3
Our task is to estimate the axial displacement u at any section x
Introduction to Finite Elements
Beams and Frames.
Materials Science & Engineering University of Michigan
FEA convergence requirements.
FEA Simulations Boundary conditions are applied
Introduction to Finite Element Analysis for Skeletal Structures
CHAPTER 2 BASIC CONCEPTS OF DISPLACEMENT OR STIFFNESS METHOD:
Slender Structures Load carrying principles
Plane Trusses (Initial notes are designed by Dr. Nazri Kamsah)
OVERVIEW OF FINITE ELEMENT METHOD
Chapter 2 Rudiment of Structural Analysis and FEM
Presentation transcript:

Element Loads Strain and Stress 2D Analyses Structural Mechanics Displacement-based Formulations

Computational Procedure Element Matrices: – Generate characteristic matrices that describe element behavior Assembly: – Generate the structure matrix by connecting elements together Boundary Conditions: – Impose support conditions, nodes with known displacements – Impose loading conditions, nodes with known forces Solution: – Solve system of equations to determine unknown nodal displacements Gradients: – Determine strains and stresses from the nodal displacements

Example B.C.’s Displacements are handled by moving the reaction influences to the right hand side and creation of equations that directly reflect the condition Forces are simply added into the right hand side E1 E2 E3 N1 N2 N u1 = F1x v1F1y u2F2x v2F2y u3F3x v3F3y u1 = v u v u v30.00 This is it! Solve for the nodal displacements … u1 = v v30 - or - No b.c.’s

Other Loading Conditions Consider the assembled equation system [K] {D} = {F} The only things we can manipulate are: – Terms of the stiffness matrix (element stiffness, connectivity) – The unknown or specified nodal displacement components – The applied nodal force components How do we manage “element” loads? – Self-weight, structural systems where gravity loads are significant – Distributed applied loads, axial, torsional, bending, pressure, etc.

Conversion to Nodal Loads All loads must be converted to nodal loads This is more difficult than it appears It is a place where FEA can go wrong and give you bad results It has consequences for strain and stress calculation q (N/m) F = ? L

You might guess F = qL/2, but why? Setting  conc =  dist :

Consistent Nodal Loads Consistent nodal loading: – Utilizes the same shape (interpolation) functions (more later) as displacement shape functions for the element – The bar (truss) shape functions specify linear displacement variation between the nodes – We choose a concentrated nodal force that results in an equivalent nodal displacement to the distributed force Question: Are element strain and stress equivalent?

No xx x xx x

Strain and Stress Calculation For bar/truss elements with just nodal boundary conditions: – Find axial elongation  L from differences in node displacements – Find axial strain  from the normal strain definition – Find axial stress  from the stress-strain relationship Even when models become more complicated (higher order displacement/strain relationship, complex constitutive model) this is the general approach

Adjusting Strain and Stress Add analytically-derived fixed-displacement strain and stress This must be done for thermally-induced distributed loading xx x xx x + Note the added constraint …

Mesh Refinement What if we model a bar (truss) or beam element not as a single element, but as many elements? No gain is made in displacement prediction – Holds true for node and element loading Strain and stress prediction improve – Results converge toward the analytical solution even without inclusion of “fixed-displacement analytical stress”

Piece-wise Interpolation If you remember nothing else about FEA, remember this … xx x xx x These are not always flat … 2D/3D elements extend this behavior dimensionally …

To Refine, or Not To Refine … It depends on the purpose of the analysis, the types of elements involved, and what your FEA code does For bar (truss) and beam elements: – Am I after displacements, or strain/stress? – Does my FEA code include analytical strain/stress? – What results does my FEA code produce? – Can I just do my own post-processing? Always refine other element types