IV. Low Energy Probes of SUSY J Erler (UNAM) A Kurylov (Caltech) C Lee (Caltech) S Su (Arizona) P Vogel (Caltech) G Prezeau (Caltech) V Cirigliano (Caltech) How is SUSY broken? How viable is SUSY dark matter ? Is there enough SUSY CP violation to account for the matter-antimatter asymmetry?
High precision, low energy measurements can probe new physics in the “desert” Complementary to Z 0 pole Precision ~ Mass Scale M=m ~ 2 x exp ~ 1 x M=M W ~ LEP & SLD programs are complete Sensitivity to off Z 0 - resonance physics Precision is improving
Weak decays = 1 SM Expt
Weak decays -decay New physics SUSY
Weak decays -decay SM theory input
Weak decays -decay 0 + ! 0 + “Superallowed” Nuclear structure- dependent corrections
Weak decays -decay 0 + ! 0 + “Superallowed” Nuclear structure- dependent corrections New tests
Weak decays -decay Liquid N 2 Be reflector Solid D 2 77 K poly Tungsten Target 58 Ni coated stainless guide UCN Detector Flapper valve LHe Ultra cold neutronsLANSCE: “UCN A”Future SNS: Pulsed Cold Neutrons: “abBA”
Weak decays -decay Decay correlations Future SNS: Pulsed Cold Neutrons: “abBA” G. Greene
Weak decays -decay LANSCESNSNIST
Weak decays V ud g v /g A -decay n ~ g v 2 +3g A 2 ILL, Grenoble
Weak decays -decay PSI: “Pi-Beta”
Weak decays kaon decay SUSY Loops: Too small Value of V us important
Weak decays kaon decay SM Theory
Weak decays kaon decay V us V. Cirigliano
SUSY Radiative Corrections Propagator Box Vertex & External leg rr
Other Inputs 1. Muon (g-2): 2. W Mass: 3. Superpartner Masses: Size of error bar crucial Start analysis with collider lower bounds and vary later m t, M H
Muon g-2 SM Theory J. Miller
Muon g-2 SUSY
Muon g-2 SUSY
Muon g-2
W Boson & Top Quark Masses Most precisely measured Dominant uncertainties M W = / M t = / /- 3.3 M Z = /
Visible World Hidden World Flavor-blind mediation SUSY Breaking SUSY theory must explain why no SUSY particles yet seen 105 parameters ~ 5 parameters
Visible World Hidden World Flavor-blind mediation SUSY Breaking SUSY Theory Flavor-blind SUSY-breaking Exp’t Experiment Kurylov & R-M clashes with
CC (non) universality & the MSSM Data appear to conflict with MSSM & models having flavor-blind SUSY-breaking mediation Possible resolutions: 1.M SUSY > TeV 2. Hadronic effects in SM predictions 3. Something is wrong with exp’t 4. New models of SUSY-breaking 5. Go beyond the MSSM SUSY irrelevant to low energy observables Better control of non-pQCD Exp’t: n decay, K e3 decay ??? Break R-parity New ideas needed ! But NuTeV LANSCE, NIST, SNS…
Kaon Decays & V us KLOE PrelimUnitarity V us Cirigliano & De Lucia
Kaon Decays & V us KLOE PrelimUnitarity V us
CC (non) universality & the MSSM Data appear to conflict with MSSM & models having flavor-blind SUSY-breaking mediation Possible resolutions: 1.M SUSY > TeV 2. Hadronic effects in SM predictions 3. Something is wrong with exp’t 4. New models of SUSY-breaking 5. Go beyond the MSSM SUSY irrelevant to low energy observables Better control of non-pQCD Exp’t: n decay, K e3 decay ??? Break R-parity But NuTeV
Visible World Hidden World Flavor-blind mediation SUSY Breaking SUSY Theory OK if no SUSY dark matter 12k Test in scattering experiments “R parity violation” (RPV) Weak decays MWMW l2 APV
R-Parity Violation (RPV) W RPV = ijk L i L j E k + ijk L i Q j D k + / i L i H u + ijk U i D j D k L=1 B=1 L i, Q i E i, U i, D i SU(2) L doublets SU(2) L singlets proton decay: Set ijk =0
Four-fermion Operators 12k 1j1 L=1