Lecture 7 Circuits Ch. 27 Cartoon -Kirchhoff's Laws Topics –Direct Current Circuits –Kirchhoff's Two Rules –Analysis of Circuits Examples –Ammeter and.

Slides:



Advertisements
Similar presentations
Kirchhoff’s rules Rules for resistors in series and parallel very useful, but: Not all resistor networks can be reduced to simple combinations of series.
Advertisements

DC Circuits Ch. 28 These circuit elements and many others can be combined to produce a limitless variety of useful devices wire open switch closed switch.
Happyphysics.com Physics Lecture Resources Prof. Mineesh Gulati Head-Physics Wing Happy Model Hr. Sec. School, Udhampur, J&K Website: happyphysics.com.
Resistivity and Resistance
Lecture 7 Circuits Ch. 27 Cartoon -Kirchhoff's Laws Warm-up problems
a b  R C I I R  R I I r V Lecture 10, ACT 1 Consider the circuit shown: –What is the relation between V a - V d and V a - V c ? (a) (V a -V d ) < (V.
2. the intensity of light bulb A increases.
Chapter 19 DC Circuits.
Chapter 18 Direct Current Circuits. Sources of emf The source that maintains the current in a closed circuit is called a source of emf Any devices that.
Fundamentals of Circuits: Direct Current (DC)
Ch 191 Chapter 19 DC Circuits © 2002, B.J. Lieb Giancoli, PHYSICS,5/E © Electronically reproduced by permission of Pearson Education, Inc., Upper.
Direct Current Circuits
Chapter 19 DC Circuits. Units of Chapter 19 EMF and Terminal Voltage Resistors in Series and in Parallel Kirchhoff’s Rules EMFs in Series and in Parallel;
T-Norah Ali Al-moneef King Saud University
DC Circuits Chapter 26 Opener. These MP3 players contain circuits that are dc, at least in part. (The audio signal is ac.) The circuit diagram below shows.
1 Fall 2004 Physics 3 Tu-Th Section Claudio Campagnari Lecture 17: 30 Nov Web page:
Fig 28-CO, p.858. Resistive medium Chapter 28 Direct Current Circuits 28.1 Electromotive “Force” (emf)
Copyright © 2009 Pearson Education, Inc. Lecture 7 – DC Circuits.
Electric Current and Direct-Current Circuits
Electric current and direct-current circuits A flow of electric charge is called an electric current.
1 Faraday’s Law of Induction If C is a stationary closed curve and S is a surface spanning C then The changing magnetic flux through S induces a non-electrostatic.
25. Electric Circuits 1.Circuits, Symbols, & Electromotive Force 2.Series & Parallel Resistors 3.Kirchhoff’s Laws & Multiloop Circuits 4.Electrical Measurements.
Copyright © 2009 Pearson Education, Inc. Chapter 26 DC Circuits.
Week 04, Day 2 W10D2 DC Circuits Today’s Reading Assignment W10D2 DC Circuits & Kirchhoff’s Loop Rules Course Notes: Sections Class 09 1.
Chapter 27 Lecture 12: Circuits.
My Chapter 18 Lecture Outline.
In conclusion, there are two requirements which must be met in order to establish an electric circuit. The requirements are: 1.There must.
Ch 191 Chapter 19 DC Circuits © 2006, B.J. Lieb Some figures electronically reproduced by permission of Pearson Education, Inc., Upper Saddle River, New.
Lecture 22: FRI 17 OCT DC circuits II Ch Physics 2113
FCI. Direct Current Circuits: 3-1 EMF 3-2 Resistance in series and parallel. 3-3 Rc circuit 3-4 Electrical instruments FCI.
Chapter 18 Direct Current Circuits. Chapter 18 Objectives Compare emf v potential difference Construct circuit diagrams Open v Closed circuits Potential.
“Over the weekend, I reviewed the exam and figured out what concepts I don’t understand.” A] true B] false 1 point for either answer.
Chapter 26 DC Circuits. Units of Chapter EMF and Terminal Voltage - 1, Resistors in Series and in Parallel - 3, 4, 5, 6, Kirchhoff’s.
a b  R C I I R  R I I r V Yesterday Ohm’s Law V=IR Ohm’s law isn’t a true law but a good approximation for typical electrical circuit materials Resistivity.
Copyright © 2009 Pearson Education, Inc. Chapter 26 DC Circuits.
Circuit Basics Direct Current (DC) Circuits 1.5 V + – wire open switch closed switch 2-way switch ideal battery capacitor resistor 47  F 4.7 k  These.
Chapter 25 Electric Circuits.
P212c27: 1 Direct Current Circuits Two Basic Principles: Conservation of Charge Conservation of Energy Resistance Networks R eq I a b.
10/9/20151 General Physics (PHY 2140) Lecture 10  Electrodynamics Direct current circuits parallel and series connections Kirchhoff’s rules Chapter 18.
Circuits Chapter 27 Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.
DC CIRCUIT PREPARED BY: Patel Nidhi Harkishnbhai Sharma Surabhi Chandra Deo BE First Semester IT ACTIVE LEARNING ASSIGNMENTS.
Chapter 19 DC Circuits. Objective of the Lecture Explain Kirchhoff’s Current and Voltage Laws. Demonstrate how these laws can be used to find currents.
Chapter 28 Direct Current Circuits. Direct Current When the current in a circuit has a constant direction, the current is called direct current Most of.
© 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
Chapter 28 Direct Current Circuits. Introduction In this chapter we will look at simple circuits powered by devices that create a constant potential difference.
Lecture 11-1 Electric Current Current = charges in motion Magnitude rate at which net positive charges move across a cross sectional surface Units: [I]
Direct Current Circuits A current is maintained in a closed circuit by an emf (electromotive force) Battery. An emf forces electrons to move against the.
Lecture 7 Circuits Chp. 28 Cartoon -Kirchoff’s Laws Opening Demo- transmission lines Physlet Topics –Direct Current Circuits –Kirchoff’s Two Rules –Analysis.
Physics 1202: Lecture 8 Today’s Agenda Announcements: –Lectures posted on: –HW assignments, solutions.
Announcements WebAssign HW Set 5 due this Friday Problems cover material from Chapters 18 My office hours today from 2 – 3 pm or by appointment (I am away.
Copyright © 2012 Pearson Education Inc. PowerPoint ® Lectures for University Physics, Thirteenth Edition – Hugh D. Young and Roger A. Freedman Lectures.
Chapter 20 Circuits And Circuit Elements Schematic Diagrams and Circuits Objectives 1.Interpret and construct circuit diagrams 2. Identify circuits.
Lectures 7 to 10 The Electric Current and the resistance Electric current and Ohm’s law The Electromotive Force and Internal Resistance Electrical energy.
Circuits Chapter 27 Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.
1 §18.1 Electric Current e-e- e-e- e-e- e-e- e-e- e-e- e-e- e-e- A metal wire. Assume electrons flow to the right. Current is a measure of the amount of.
Lecture 12-1 Resistors in Parallel and in Serial R1R1 R2R2 i i ε.
Chapter 19 DC Circuits. EMF and Terminal Voltage Any device that can transform a type of energy into electric energy is called a source of electromotive.
Current = charges in motion
Ammeters and Voltmeters*
Direct Current Circuits
Chapter 20 Circuits And Circuit Elements.
Circuits Rs r Ig Is I r >> Rs A + - Chapter 27 R V r e I + -
Electricity and magnetism Chapter Seven: DC Circuits
Physics 1202: Lecture 6 Today’s Agenda
Direct Current Circuits
This Class Resistors in series: Current through is same.
Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.
Ideal vs Real Battery Ideal battery: no internal energy dissipation
Kirchhoff’s rules Rules for resistors in series and parallel very useful, but: Not all resistor networks can be reduced to simple combinations of series.
Presentation transcript:

Lecture 7 Circuits Ch. 27 Cartoon -Kirchhoff's Laws Topics –Direct Current Circuits –Kirchhoff's Two Rules –Analysis of Circuits Examples –Ammeter and voltmeter –RC circuits Demos –Three bulbs in a circuit –Power loss in transmission lines –Resistivity of a pencil –Blowing a fuse Elmo

Transmission line demo

Kirchhoff's Laws 1.The sum of the potential drops around a closed loop is zero. This follows from energy conservation and the fact that the electric field is a conservative force. 2. The sum of currents into any junction of a closed circuit must equal the sum of currents out of the junction. This follows from charge conservation.

Example (Single Loop Circuit) How do we apply Kirchhoff’s Rule 1? Must assume the direction of the current – assume clockwise. Choose a starting point and sum all voltages drops around the circuit using Ohm’s Law

Example (Single Loop Circuit) a.Potential drop across resistors is negative when traversing in the same direction as current. b.Sign of E for a battery is positive when traversing in the same direction as current and assumed current direction is negative to positive in the battery. c. Sign of E for a battery is negative when traversing in the same direction as current and assumed current direction is positive to negative in the battery. d. Reverse the sign for b and c when you are traversing the circuit in the opposite direction as the assumed current.

Now let us put in numbers. Suppose: amp Suppose: amp We get a minus sign. It means our assumed direction of current must be reversed. Note that we could have simply added all resistors and get the R eq. and added the EMFs to get the E eq. And simply divided. amp Sign of EMF Battery 1 current flows from - to + in battery +E 1 Battery 2 current flows from + to - in battery -E 2 In 1 the electrical potential energy increases In 2 the electrical potential energy decreases

Example with numbers Quick solution: Question: What is the current in the circuit? Write down Kirchhoff’s loop equation. Loop equation Assume current flow is clockwise. Do the batteries first – Then the current.

Example with numbers (continued) Question: What are the terminal voltages of each battery? 2V: 4V: 12V:

Multiloop Circuits Kirchoff’s Rules 1. in any loop 2. at any junction Find i, i 1, and i 2 Rule 1 – Apply to 2 loops (2 inner loops) Rule 2 3. We now have 3 equations with 3 unknowns. multiply by 2 multiply by 3 subtract them Find the Joule heating in each resistor P=i 2 R. Is the 5V battery being charged?

Method of determinants for solving simultaneous equations Cramer’s Rule says if : Then,

You try it for i 1 and i 2. See inside of front cover in your book on how to use Cramer’s Rule. For example solve for i Method of determinants using Cramers Rule and cofactors Also use this to remember how to evaluate cross products of two vectors.

Another example Find all the currents including directions. Loop 1 Loop 2 Loop 1 Loop 2 ii i i i1i1 i2i2 i2i2 Multiply red eqn of loop 1 by 2 and subtract from the red eqn of loop 2 Start here

Rules for solving multiloop circuits 1.Replace series resistors or batteries with their equivalent values. 2.Choose a direction for i in each loop and label diagram. 3.Write the junction rule equation for each junction. 4.Apply the loop rule n times for n interior loops. 5.Solve the equations for the unknowns. Use Cramer’s Rule if necessary. 6.Check your results by evaluating potential differences.

3 bulb question The circuit above shows three identical light bulbs attached to an ideal battery. If the bulb#2 burns out, which of the following will occur? a)Bulbs 1 and 3 are unaffected. The total light emitted by the circuit decreases. b)Bulbs 1 and 3 get brighter. The total light emitted by the circuit is unchanged. c)Bulbs 1 and 3 get dimmer. The total light emitted by the circuit decreases. d)Bulb 1 gets dimmer, but bulb 3 gets brighter. The total light emitted by the circuit is unchanged. e)Bulb 1 gets brighter, but bulb 3 gets dimmer. The total light emitted by the circuit is unchanged. f)Bulb 1 gets dimmer, but bulb 3 gets brighter. The total light emitted by the circuit decreases. g)Bulb 1 gets brighter, but bulb 3 gets dimmer. The total light emitted by the circuit decreases. h)Bulb 1 is unaffected, but bulb 3 gets brighter. The total light emitted by the circuit increases. i)None of the above.

When the bulb #2 is not burnt out: For Bulb #1 For Bulb #2 For Bulb #3

For Bulb #1 For Bulb #2 For Bulb #3 So, Bulb #1 gets dimmer and bulb #3 gets brighter. And the total power decreases. f) is the answer. Before total power was After total power is When the bulb #2 is burnt out:

How does a capacitor behave in a circuit with a resistor? Charge capacitor with 9V battery with switch open.. Remove battery and close the switch. What happens?

Discharging a capacitor through a resistor V(t) Potential across capacitor = V = just before you throw switch at time t = 0. Potential across Resistor = iR Just after you throw the switch What is the current I at time t?

Integrating both the sides Time constant =RC What is the charge Q at time t?

Ignore - sign i t RC What is the current?

How the charge on a capacitor varies with time as it is being charged What about charging the capacitor? Same as before Note that the current is zero when either the capacitor is fully charged or uncharged. But the second you start to charge it or discharge it, the current is maximum.

Instruments Galvanometers:a coil in a magnetic field that senses current. Ammeters:measures current. Voltmeter:measures voltage. Ohmmeters:measures resistance. Multimeters:one device that does all the above. Galvanometer is a needle mounted to a coil that rotates in a magnetic field. The amount of rotation is proportional to the current that flows through the coil. Symbolically we write Usually when

Ohmmeter Adjust R s so when R=0 the galvanometer read full scale.

Ammeter The idea is to find the value of R S that will give a full scale reading in the galvanometer for 5A Ammeters have very low resistance when put in series in a circuit. You need a very stable shunt resistor. Very small

Voltmeter Use the same galvanometer to construct a voltmeter for which full scale reading in 10 Volts. What is the value of R S now? So, the shunt resistor needs to be about 20K  Note: the voltmeter is in parallel with the battery. We need

Chapter 27 Problem 19 In Figure 27-34, R1 = 100, R2 = 30, and the ideal batteries have emfs script e1 = 6.0 V, script e2 = 5.0 V, script e3 = 3.0 V. Fig (a) Find the current in resistor 1. (b) Find the current in resistor 2. (c) Find the potential difference between points a and b. Fig

Chapter 27 Problem 27 In Figure 27-40, the resistances are R1 = 0.5, R2 = 1.7, and the ideal batteries have emfs script e1 = 2.0 V, and script e2 = script e3 = 3 V. Fig (a) What is the current through each battery? (Take upward to be positive.) battery 1 battery 2 battery 3 (b) What is the potential difference Va - Vb?

Chapter 27 Problem 38 A simple ohmmeter is made by connecting a 4.0 V battery in series with a resistance R and an ammeter that reads from 0 to 1.00 mA, as shown in Figure Resistance R is adjusted so that when the clip leads are shorted together, the meter deflects to its full-scale value of 1.00 mA. Fig (a) What external resistance across the leads results in a deflection of 10% of full scale? (b) What resistance results in a deflection of 50% of full scale? (c) What resistance results in a deflection of 90% of full scale? (d) If the ammeter has a resistance of 40.0 and the internal resistance of the battery is negligible, what is the value of R?