電気的に励起された 岩田順敬 ( 東大理 ) Cedric Simenel (CEA/Saclay) 原子核の時間発展 Thanks to: 大塚孝治 ( 東大理、東大 CNS 、理研 ) Michael Bender (CEA/Saclay)

Slides:



Advertisements
Similar presentations
The role of the isovector monopole state in Coulomb mixing. N.Auerbach TAU and MSU.
Advertisements

Some (more) Nuclear Structure
微視的核構造反応模型を用いた 9Li 原子核の励起状態の研究
CEA DSM Irfu 14 Oct Benoît Avez - [Pairing vibrations with TDHFB] - ESNT Workshop1 Pairing vibrations study in the Time-Dependent Hartree-Fock Bogoliubov.
Electron wavefunction in strong and ultra-strong laser field One- and two-dimensional ab initio simulations and models Jacek Matulewski Division of Collision.
Nicolas Michel Importance of continuum for nuclei close to drip-line May 20th, 2009 Description of drip-line nuclei with GSM and Gamow/HFB frameworks Nicolas.
Non-equilibrium dynamics in the Dicke model Izabella Lovas Supervisor: Balázs Dóra Budapest University of Technology and Economics
Emission of Scission Neutrons: Testing the Sudden Approximation N. Carjan Centre d'Etudes Nucléaires de Bordeaux-Gradignan,CNRS/IN2P3 – Université Bordeaux.
Microscopic time-dependent analysis of neutrons transfers at low-energy nuclear reactions with spherical and deformed nuclei V.V. Samarin.
14-18 June 2005 International Conference on Finite Fermi Systems: Nilsson Model 50 years, Lund, Sweden Stuart Pittel Bartol Research Institute, University.
Finite Nuclei and Nuclear Matter in Relativistic Hartree-Fock Approach Long Wenhui 1,2, Nguyen Van Giai 2, Meng Jie 1 1 School of Physics, Peking University,
Forces for extensions of mean-field PhD Thesis Marlène Assié Denis Lacroix (LPC Caen), Jean-Antoine Scarpaci (IPN Orsay)  Extensions of mean-field ? 
Double beta decay nuclear matrix elements in deformed nuclei O. Moreno, R. Álvarez-Rodríguez, P. Sarriguren, E. Moya de Guerra F. Šimkovic, A. Faessler.
Fusion-Fission Dynamics for Super-Heavy Elements Bülent Yılmaz 1,2 and David Boilley 1,3 Fission of Atomic Nuclei Super-Heavy Elements (SHE) Measurement.
Single Particle Energies
9/28/ :01 (00) PAIRING PROPERTIES OF SUPERHEAVY NUCLEI A. Staszczak, J. Dobaczewski and W. Nazarewicz (KFT UMCS) (IFT UW) (ORNL & UT)
Fission Barriers in Skyrme-HFB Approach LORW group 14 th Nuclear Physics Workshop "Marie & Pierre Curie" Kazimierz 2007.
Emilian Nica Texas A&M University Advisor: Dr.Shalom Shlomo
横田 朗A 、 肥山 詠美子B 、 岡 眞A 東工大理工A、理研仁科セB
Beatriz Jurado, Karl-Heinz Schmidt CENBG, Bordeaux, France Supported by EFNUDAT, ERINDA and NEA The GEneral Fission code (GEF) Motivation: Accurate and.
スペクトルおよび 時間分解光誘起ファラデー回転による 磁気ポーラロンスピン配向過程 Spin polarization dynamics on magnetic polaron by means of spectrum- and time-resolved Faraday rotation 橋本 佑介、三野.
1 The Random Phase Approximation in Nuclear Physics  Lay out of the presentation: 1. Linear response theory: a brief reminder 2. Non-relativistic RPA.
XII Nuclear Physics Workshop Maria and Pierre Curie: Nuclear Structure Physics and Low-Energy Reactions, Sept , Kazimierz Dolny, Poland Self-Consistent.
格子QCDシミュレーションによる QGP媒質中のクォーク間ポテンシャルの研究
Effects of self-consistence violations in HF based RPA calculations for giant resonances Shalom Shlomo Texas A&M University.
Angular Momentum Projection in TDHF Dynamics : application to Coulomb excitation and fusion C. Simenel 1,2 In collaboration with M. Bender 2, T. Duguet.
クラスター・シェル競合の新展開 板垣 直之 ( 京都大学基礎物理学研究所 ). Shell structure; single-particle motion of protons and neutrons decay threshold to clusters Excitation energy.
Nuclear Structure and dynamics within the Energy Density Functional theory Denis Lacroix IPN Orsay Coll: G. Scamps, D. Gambacurta, G. Hupin M. Bender and.
Stochastic quantum dynamics beyond mean-field. Denis Lacroix Laboratoire de Physique Corpusculaire - Caen, FRANCE Introduction to stochastic TDHF Application.
Physics 452 Quantum mechanics II Winter 2012 Karine Chesnel.
Mean-Field Description of Heavy Neutron-Rich Nuclei P. D. Stevenson University of Surrey NUSTAR Neutron-Rich Minischool Surrey, 2005.
The calculation of Fermi transitions allows a microscopic estimation (Fig. 3) of the isospin mixing amount in the parent ground state, defined as the probability.
Systematic study of isovector dipole mode up to A=50 KEK 研究会「原子核・ハドロン物理 : 横断研究会」 KEK, 2007 年 11 月 19 日 -21 日 稲倉恒法 中務孝 矢花一浩 ( 筑波大学 ) ( 理研 ) ( 筑波大学 )
The Algebraic Approach 1.Introduction 2.The building blocks 3.Dynamical symmetries 4.Single nucleon description 5.Critical point symmetries 6.Symmetry.
Coupling of (deformed) core and weakly bound neutron M. Kimura (Hokkaido Univ.)

Yoritaka Iwata 1 and Takaharu Otsuka 1,2 Reaction mechanism in neutron-rich nuclei 1 Department of Physics, University of Tokyo Advices about using TDHF.
FUSTIPEN-GANIL OCTOBER 13, 2014 Quantal Corrections to Mean-Field Dynamics Sakir Ayik Tennessee Tech University Stochastic Mean-Field Approach for Nuclear.
Nuclear Collective Excitation in a Femi-Liquid Model Bao-Xi SUN Beijing University of Technology KITPC, Beijing.
Theoretical Study on Vibronic Interactions and Photophysics of Low-lying Excited Electronic States of Polycyclic Aromatic Hydrocarbons S. Nagaprasad Reddy.
Fission Collective Dynamics in a Microscopic Framework Kazimierz Sept 2005 H. Goutte, J.F. Berger, D. Gogny CEA Bruyères-le-Châtel Fission dynamics with.
Ways to treat spontaneous & other fission from instanton perspective with some results obtained with: W. Brodziński, P. Jachimowicz, M. Kowal, J. Skalski.
Some (more) High(ish)-Spin Nuclear Structure Paddy Regan Department of Physics Univesity of Surrey Guildford, UK Lecture 2 Low-energy.
Some aspects of chaos in TDHF …and a bit of laser-induced fission P. D. Stevenson, University of Surrey, UK …and a bit of laser-induced fission P. D. Stevenson,
Lieb-Liniger 模型と anholonomy 阪市大数研: 米澤 信拓 首都大学東京: 田中 篤司 高知工科大学: 全 卓樹.
Physics 452 Quantum mechanics II Winter 2011 Karine Chesnel.
Nuclear density functional theory with a semi-contact 3-body interaction Denis Lacroix IPN Orsay Outline Infinite matter Results Energy density function.
Quantum Phase Transitions in Nuclei
Satoru Sugimoto Kyoto University 1. Introduction 2. Charge- and parity-projected Hartree-Fock method (a mean field type model) and its application to sub-closed.
Time dependent GCM+GOA method applied to the fission process ESNT janvier / 316 H. Goutte, J.-F. Berger, D. Gogny CEA/DAM Ile de France.
Gogny-TDHFB calculation of nonlinear vibrations in 44,52 Ti Yukio Hashimoto Graduate school of pure and applied sciences, University of Tsukuba 1.Introduction.
Study of repulsive nature of optical potential for high energy 12 C+ 12 C elastic scattering (Effect of the tensor and three-body interactions) Gaolong.
Yoritaka Iwata 1, Naoyuki Itagaki 2, Takaharu Otsuka 1,2,3 1 Department of Physics, University of Tokyo. 2 CNS, University of Tokyo. 3 RIKEN. Competitive.
Systematic analysis on cluster components in He-isotopes by using a new AMD approach Niigata University Shigeyoshi Aoyama FB18, August 24 (2006) S. Aoyama,
Few-Body Models of Light Nuclei The 8th APCTP-BLTP JINR Joint Workshop June 29 – July 4, 2014, Jeju, Korea S. N. Ershov.
理論から見たテンソル力 Hiroshi Toki (RCNP, Osaka University) In collaboration with T. Myo (Osaka IT) Y. Ogawa (RCNP) K. Horii (RCNP) K. Ikeda.
Theoretical Nuclear Physics Laboratory
The role of isospin symmetry in medium-mass N ~ Z nuclei
Open quantum systems.
Zao-Chun Gao(高早春) China Institute of Atomic Energy Mihai Horoi
The Isovector Giant Quadrupole Resonance & Nuclear Matter
Structure and dynamics from the time-dependent Hartree-Fock model
Microscopic studies of the fission process
The continuum time-dependent Hartree-Fock method for Giant Resonances
Quantum mechanics II Winter 2011
From instantons to spontaneous fission rates
Daisuke ABE Department of Physics, University of Tokyo
Introduction to physics
Kyorin University Mitsuru Tohyama
V.V. Sargsyan, G.G. Adamian, N.V.Antonenko
Presentation transcript:

電気的に励起された 岩田順敬 ( 東大理 ) Cedric Simenel (CEA/Saclay) 原子核の時間発展 Thanks to: 大塚孝治 ( 東大理、東大 CNS 、理研 ) Michael Bender (CEA/Saclay)

Electric excitation for fissions tar get E1 excitation E2 excitation Electric excitation Induced fission Real time evolution Photo-induced fission

Let us break 16 O ! Ideas for “The way of giving some energies for the ground state”  Induced fission (electrical excited initial state) TDHF TDHF (with excitation) Full Diabatic E2 excitation E1 excitation  Deformed initial state Constraint HF + TDHF + Adiabatic J. W. Negele et al., Phys. Rev. C. 17, 3 (1978) Initial state on the saddle point

Interaction TDHF Lagrangian → One body evolution Antisymmetrized potential TDHF equation (←Time dependent variational principle) TDHF Equation with Excitations Electric excitation SLy 4d SLy4d : SLy4d : Chabanat - Bonche - Hansel, (1995)

AmplitudeTime t 0 Instantaneous Time-orderingExcitation part ”One body time evolution” (final form) Electric Excitations ( E1 & E2 Excitation ) : Hamiltonian with nuclear force

The initial state HF ground state we calculate the HF ground state of Oxygen 16 E2 excitation E1 excitation time “The boundary condition” is chosen to be Dirichlet zero on the edge of 3D box The initial and the boundary value problem for TDHF equation Ev8 : P. Bonche et al., Comp. Phys. Com. 171, 49 (2005) P. Bonche et al., Comp. Phys. Com. 171, 49 (2005) space

E2 excitation The most dominant transition in each case is considered to be as follows: Energy E2 excitation causes deformation Excited initial state (small amp. & GQR dominance) Time evolution Q 2 oscillation E2 excitation

Excitation energy: 16MeV The lower and the upper energy estimate for the induced fission energy of quadrupole type E2 excitati on Nonlinearity exists: a small difference in excitation leads a large difference ! Gap 262MeV 288MeV 86MeV 22MeV 16 O 1 time step = 0.45 fm/c

E2 excitati on 192MeV fission oscillation 288MeV time = fm/c 16 O 8 Be + 8 Be

E1 excitation Two mode coupling state We will measure the deformation by The most dominant transition in each case is considered to be as follows: Energy E1 excitation also causes deformation Time evolution Q 2 oscillation Important state of this case C. Simenel and Ph. Chomaz. Phys. Review C, 68. (2003) . E1 excitation

The exchange of the dominant excitation for [fm 2 ] E* [MeV] q0q0 E1 excitation: E2 excitation: Initial state trivial R b/a 2b/a 2 16 O 15MeV E1 E2 Small amp. b/ab/a

TDHF Results of Electric Oscillation caused by E1 excitation 16 O E1 Excitation (18MeV) is given evolution

Existence of a singular point 16 O 157MeV 274MeV 71MeV 18MeV 423MeV ~800MeV E1 excitati on Singular point is observed in TDHF calculation There exists a singular point around here More precisely, 242MeV –309MeV

TDHF Results of Electric Oscillations Center of oscillation Damping oscillation def E1 excitati on critical 16 O 274MeV 424MeV 157MeV 71MeV 605MeV Converging to excited oxygen Separating into fragments At the critical At the critical, “Dominant transition exchange” is switched on !? damped oscillation Above the critical, damped oscillation can be seen in motion.

E1 excitati on 274MeV Broken Excited state 605MeV time = fm/c

CHF calculation for 16 O ~35MeV Q 2 Constraint is given

CHF result for the initial state of TDHF calculation Real time evolution TDHF How about the dynamics of the fission fragment ? 35MeV Excited state with 35MeV from the ground state CHF time = fm/c time = 0.0 fm/s

Summary E1 excitation E1 excitation Perspective “unstable nuclei” Based on this result, we will go for “unstable nuclei” E2 excitation E2 excitation CHF + TDHF calculation CHF + TDHF calculation 280MeV ( 17.5 MeV/A ) 35MeV 35MeV + adiabatic (initial state) full diabatic Excitation energy [MeV] 280~ O Exchange of E1 & E2 CHF Induced fission(TDHF) Diff.profile for E1 & E2 gaposcillation or not