Protein Degradation and Amino Acids Metablism

Slides:



Advertisements
Similar presentations
Section M Nitrogen metabolism
Advertisements

Protein Turnover and Amino Acid Catabolism
Biochemistry Sixth Edition
Detoxification of ammonia and biosynthesis of urea. The basic features of nitrogen metabolism were elucidated initially in pigeons.
FCH 532 Lecture 20 Quiz on Wed. Amino acids (25 min)
Chapter 26 Amino Acids Metabolism.
Amino acid oxidation and the production of urea
1 LECTURES CATABOLISM OF PROTEINS AND AMINO ACID NITROGEN DR SAMEER FATANI BIOCHEMISTRY (METABOLISM)
Chapter 17 - Amino Acid Metabolism
Amino Acid Catabolism: N Copyright © by Joyce J. Diwan. All rights reserved. Molecular Biochemistry II.
Degradation of amino acids Amino acid breakdown can yield: –Acetyl-CoA –  -KG –Succinyl-CoA –OAA –fumarate.
Amino Acids Metabolism: Disposal of Nitrogen.
Amino Acid Catabolism C483 Spring Which of the following is/are true statement(s) about glutamine and alanine? A) They are nitrogen donors in.
BIOC/DENT/PHCY 230 LECTURE 4. Nitrogen Metabolism Many nitrogen containing compounds eg. Amino acids, nucleotides, porphyrins, neurotransmitters There.
Catabolism of proteins and amino acids. Reactions in the attachment of ubiquitin to proteins.
Copyright COMMONWEALTH OF AUSTRALIA Copyright Regulation WARNING This material has been reproduced and communicated to you by or on behalf of the University.
Role of Amino Acids Protein monomeric units Energy source Precursors of other biological molecules Protein monomeric units Energy source Precursors of.
FCH 532 Lecture 22 Chapter 26: Amino acid metabolism
Fates of the Carbon Atoms from Amino Acids Synthesis of Amino Acids Chapter 25 Metabolic Pathways for Lipids and Amino Acids.
Digestion of Proteins 25.7 Degradation of Amino Acids 25.8 Urea Cycle Chapter 25 Metabolic Pathways for Lipids and Amino Acids.
Chemistry: An Introduction to General, Organic, and Biological Chemistry, Eleventh Edition Copyright © 2012 by Pearson Education, Inc. Chapter 18 Metabolic.
BIOC 460 DR. TISCHLER LECTURE 38 AMINO ACID DEGRADATION/ UREA CYCLE.
Amino Acids Metabolism Amino Acids Metabolism 2 nd Year Medicine By Eman Mokbel Alissa, Ph.D.
Pratt and Cornely Chapter 18
Principles of Biochemistry
The Big Picture of Protein Metabolism Gladys Kaba.
Metabolism of amino acids, purine and pyrimidine bases
LIPID METABOLISM – BLOOD LIPIDS
Metabolism of Amino Acid
General pathways of amino acids transformation.
Protein Metabolism 1  Denotes the various biochemical processes responsible for the synthesis of proteins and amino acids tthe breakdown of proteins.
Protein Turnover and Amino Acid Catabolism. The Digestion and Absorption of Dietary Proteins Pepsin nonspecific maximally active at low pH of the stomach.
Amino acid metabolism · Nitrogen balance protein catabolism, synthesis biosynthesis normal N balance: N ingested = N excreted negative N balance: N ingested.
Amino acid degradation Most of absorbed dietary amino acids are catabolized by 2 subsequent steps: I- Removal of α-amino group: α-amino group is removed.
Biochemistry: A Short Course Second Edition Tymoczko Berg Stryer © 2013 W. H. Freeman and Company CHAPTER 30 Amino Acid Degradation and the Urea Cycle.
February 14 Chapter 26 Amino Acid Metabolism
Fig. 23-1, p.630 Amino acids act principally as the building blocks and to the synthesis of variety of other biologically molecules. When a.acids deaminated.
Overview of Nitrogen Metabolism and Biosynthesis of Amino Acids
Chem 454: Biochemistry II University of Wisconsin-Eau Claire Chem 454: Biochemistry II University of Wisconsin-Eau Claire Protein Turnover and Amino Acid.
BIOC/DENT/PHCY 230 LECTURE 5. glu UREA o synthesised mainly in liver o maintains N in a soluble, non-toxic form o transported in blood to kidney for.
Nitrogen Cycle. Summary of Protein and Amino Acid Metabolism.
Amino acid metabolism M.F.Ullah,Ph.D COURSE TITLE: BIOCHEMISTRY 2
17.8 Amino Acid Catabolism Amino acids from degraded proteins or from diet can be used for the biosynthesis of new proteins During starvation proteins.
Protein Metabolism Denotes the various biochemical processes responsible for the synthesis of proteins and amino acids the breakdown of proteins (and other.
Amino acid metabolism IV. Biosynthesis of nonessential amino acids Figures: Lehninger-4ed; fejezet: 22 (Stryer-5ed; fejezet: 24)
Amino Acid Degradation and Nitrogen Metabolism
Catabolism of tissue protein,Protein degradation ط Essential and nonessential amino acids ط Protein turnover in a regular manner, Apoptosis ط Nitrogen.
LEHNINGER PRINCIPLES OF BIOCHEMISTRY Fifth Edition David L. Nelson and Michael M. Cox © 2008 W. H. Freeman and Company CHAPTER 18 Amino Acid Oxidation.
Amino Acid Oxidation and Production of Urea
AMINO ACIDS METABOLISM Course: MEDICIMAL CHEMISTRY 1 Course Code: 301.
Metabolism of Amino Acid
The Nitrogen Cycle Nitrite reductase Nitrate reductase nitrogenase.
Amino acids - Classifications, Amino acids Physico – Chemical Properties, Protein structure, folding & function, Nitrogen Cycle Nitrogen Balance, Reductive.
Amino Acid Metabolism CHY2026: General Biochemistry.
Enter in the formation of A.A. pool
Pratt and Cornely Chapter 18
Dr. Ghufran Mohammed Hussein
Pratt and Cornely Chapter 18
Urea Biosynthesis Transamination. 2. Oxidative Deamination.
Learning Objectives 1. What Processes Constitute Nitrogen Met.? 2. How Is Nitrogen Incorporated into Biologically Useful Compounds? 3. What Role Does Feedback.
24.6 Degradation of Proteins and Amino Acids
Catabolism of amino acids
Amino acid metabolism Metabolism of amino acids differs, but 3 common reactions: Transamination Deamination Decarboxylation.
Amino Acid Metabolism.
MBG304 Biochemistry Lecture 9: Amino acid metabolism
Amino Acid Metabolism The continuous degradation and synthesis of cellular proteins occur in all forms of life. Each day humans turn over 1–2% of.
1. מעגל האוריאה 1 1.
Nitrogen metabolism Part C:
What is the name of the amino acid shown below?
PROTEIN METABOLISM Prof.Dr.Fügen Aktan
Presentation transcript:

Protein Degradation and Amino Acids Metablism 蛋白质的分解代谢 Protein Degradation and Amino Acids Metablism

Contents Protein degradation Amino Acid Degradation Biosynthesis of amino acids

I. Protein Degradation

Biological Functions of Proteins Enzymes Transport proteins Nutrient and storage proteins Contractile or motile proteins Structural proteins Defense proteins Regulatory proteins Other proteins

Nitrogen balance Zero or total nitrogen balance: the intake = the excretion (adult) Positive nitrogen balance: the intake > the excretion (during pregnancy, infancy, childhood and recovery from severe illness or surgery ) Negative nitrogen balance: the intake < the excretion (following severe trauma, surgery or infections. Prolonged periods of negative balance are dangerous and fatal. )

Classification of amino acids non-essential amino acids - can be synthesized by an organism - usually are prepared from precursors in 1-2 steps Essential amino acids *** - can not be made endogenously - must be supplied in diet

Nonessential Essential Alanine Arginine* Asparagine Histidine * Aspartate Valine Cysteine Lysine Glutamate Isoleucine Glutamine Leucine Glycine Phenylalanine Proline Methionine Serine Threonine Tyrosine Tyrptophan *The amino acids Arg, His are considered “conditionally essential” for reasons not directly related to lack of synthesis and  they are essential  for growth only

Degradation of dietary proteins

Degradation of proteins Degraded by ubiquitin(泛素) label 2. Degraded by the protease and the peptidase in the Lysosome(溶酶体)

1. Degraded by ubiquitin(泛素) label Ubiquitin, a extremely well conserved 76-residue protein, Ubiquitin binds lysine side chain Degrade abnormal protein of her own Targets for hydrolysis by proteosomes in cytosol and nucleus ATP required

2. Degraded by the protease and the peptidase in the Lysosome(溶酶体) non- ATP required the hydrolysis-selective are bad Degrade adventive protein

The ubiquitin degradation pathway E2:carrier protein E3:ligase ATP AMP+PPi E2-SH E3 E1-S- E2-S- (ubiquitin) E1-SH E2-SH E1-SH E1:activiting enzyme E2:carrier protein E3:ligase ubiquitinational protein ATP 19S regulate substrate ATP 20S Proteasome 26S Proteasome

II. Amino acids Degradation

The catabolism of amino acids

I. Deamination A. Transamination B. Oxidative deamination C. Combined Deamination

A. Transamination Transamination by Aminotransferase (transaminase) always involve PLP coenzyme (pyridoxal phosphate) reaction goes via a Schiff’s base intermediate all transaminase reactions are reversible

Transamination aminotransferases

B. Oxidative Deamination L-glutamate dehydrogenase (in mitochondria)

C. Combined Deamination 1. Transamination + Oxidative Deamination ?

2. Transamination + purine nucleotide cycle NH3 AA Asp -Keto glutarate IMP H2O aminotransferases AST 2. Transamination + purine nucleotide cycle AMP -Keto acid Oxaloacetate fumarate malate

II. Decarboxylation The decarboxylation of AAs produce some neurotransmitters’ precursors – bioactive amines

-aminobutyric acid (GABA) Glutamine can be decarboxylated in a similar PLP-dependent fashion, outputting -aminobutyric acid (neurotransmitter, GABA) L-Glu decarboxylase – CO2 GABA L-Glu

Histidine decarboxylase L-Histidine – CO2 Histidine decarboxylase Histamine 强烈的血管舒张剂。增加血管的通透性,降低血压,甚至死亡。 Histamine

III. The metabolism of α-ketoacid Biosynthesis of nonessential amino acids TCA cycle member + amino acid α-keto acid + nonessential amino acid A source of energy (10%) ( CO2+H2O ) Glucogenesis and ketogenesis

Fate of the C-Skeleton of Amino Acids

Ⅳ . ammonia metabolism Fix ammonia onto glutamate to form glutamine and use as a transport mechanism Transport ammonia by alanine-glucose cycle and Gln regeneration Excrete nitrogenous waste through urea cycle

Transportation of ammonia alaninie - glucose cycle * regenerate Gln

Alanine-Glucose cycle In the liver alanine transaminase tranfers the ammonia to α-KG and regenerates pyruvate. The pyruvate can then be diverted into gluconeogenesis. This process is refered to as the glucose-alanine cycle.

Gln regeneration

Urea synthesis Synthesis in liver (Mitochondria and cytosol) Excretion via kidney To convert ammonia to urea for final excretion

The urea cycle: 线粒体 尿素 胞 液 CO2 + NH3 + H2O 氨基甲酰磷酸 Pi 瓜氨酸 鸟氨酸 瓜氨酸 氨基酸 2ADP+Pi CO2 + NH3 + H2O 氨基甲酰磷酸 2ATP N-乙酰谷氨酸 线粒体 Pi 鸟氨酸 瓜氨酸 精氨酸代 琥珀酸 瓜氨酸 天冬氨酸 ATP AMP + PPi 氨基酸 草酰乙酸 苹果酸 α-酮戊 二酸 谷氨酸 α-酮酸 鸟氨酸 尿素 精氨酸 延胡索酸 胞 液

UREA CYCLE (liver) 1. Overall Reaction: NH3 + HCO3– + aspartate + 3 ATP + H2O  urea + fumarate + 2 ADP + 2 Pi + AMP + ppi 2. Requires 5 enzymes: 2 from mitochondria and 3 from cytosol

Regulation of urea cycle The intake of the protein in food:the intake↑↑urea synthesis AGA:CPS I is an allosteric enzyme sensitive to activation by N-acetylglutamate(AGA) which is derived from glutamate and acetyl-CoA. All intermediate products accelerate the reaction Rate-limiting enzyme of urea cycle is argininosuccinate synthetase(精氨酸代琥珀酸合成酶)

The Urea Cycle is Linked to the Citric Acid Cycle NH4+

III. Biosynthesis of Amino acids

Ammonium Ion Is Assimilated into Amino Acids Through Glutamate and Glutamine Major Ammonium ion carrier

Biosynthesis of Amino Acids