BC System – Review Options ● BC2 working point (energy-charge-compr.) ● 2BC (rf-rf-bc-rf-bc-rf) ● table: 2BC (rf-rf-bc-rf-bc-rf) dogleg + 2BC (rf-dog-rf-rf-bc-rf-bc-rf)

Slides:



Advertisements
Similar presentations
FEL Beam Dynami cs FEL Beam Dynamics T. Limberg Short Bunches at FLASH.
Advertisements

Nominal and no CSR (R 56-1 = 55 mm, R 56-2 = 59 mm, R 56-3 = 0) L1 phase = 21 deg, V 3.9 = 55 MV CSR OFF BC3 OFF Elegant Tracking  z1 = mm (post.
Schemes for generation of attosecond pulses in X-ray FELs E.L. Saldin, E.A. Schneidmiller, M.V. Yurkov The potential for the development of XFEL beyond.
1 Optimal focusing lattice for XFEL undulators: Numerical simulations Vitali Khachatryan, Artur Tarloyan CANDLE, DESY/MPY
Christopher Gerth, Michael Röhrs, Holger Schlarb DESY Hamburg Optics for Diagnostic Section BC1 in the European XFEL.
1 Bates XFEL Linac and Bunch Compressor Dynamics 1. Linac Layout and General Beam Parameter 2. Bunch Compressor –System Details (RF, Magnet Chicane) –Linear.
P. Emma LCLS FAC 12 Oct Comments from LCLS FAC Meeting (April 2004): J. Roßbach:“How do you detect weak FEL power when the.
Paul Emma LCLS Commissioning Status Nov. 11, 2008 SLAC National Accelerator Laboratory 1 LCLS Commissioning Status P. Emma for The.
C.Limborg-Deprey Beam Dynamics Justifying L01 November 3 rd 2004 Beam Dynamics Justifications of modification of.
Comments from LCLS FAC Meeting (April 2004): J. Rößbach:“How do you detect weak FEL power when the gain is very low (few hundred)?” K. Robinson:“Can you.
E. Bong, SLACLCLS FAC Meeting - April 29, 2004 Linac Overview E. Bong LCLS FAC Meeting April 29, 2004 LCLS.
LCLS-II Transverse Tolerances Tor Raubenheimer May 29, 2013.
Beam Dynamic Shifts 2011 C. Behrens, W. Decking, M. Dohlus, H. & D. Edwards, C. Gerth, T. Hellert, T. Limberg, P. Piot, E. Schneidmiller, M. Scholz, M.
FEL Beam Dynami cs FEL Beam Dynamics T. Limberg FEL driver linac operation with very short electron bunches.
Photocathode 1.5 (1, 3.5) cell superconducting RF gun with electric and magnetic RF focusing Transversal normalized rms emittance (no thermal emittance)
Review of the European XFEL Bunch Compression System Summary Torsten Limberg.
TTF2 Start-to-End Simulations Jean-Paul Carneiro DESY Hamburg TESLA COLLABORATION MEETING DESY Zeuthen, 22 Jan 2004.
S2E in LCLS Linac M. Borland, Lyncean Technologies, P. Emma, C. Limborg, SLAC.
SPPS, Beam stability and pulse-to-pulse jitter Patrick Krejcik For the SPPS collaboration Zeuthen Workshop on Start-to-End Simulations of X-ray FEL’s August.
Two Longitudinal Space Charge Amplifiers and a Poisson Solver for Periodic Micro Structures Longitudinal Space Charge Amplifier 1: Longitudinal Space Charge.
Simulation of Microbunching Instability in LCLS with Laser-Heater Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory.
Yujong Kim The Center for High Energy Physics, Korea DESY Hamburg, Germany Alternative Bunch Compressors.
Beam Dynamics and FEL Simulations for FLASH Igor Zagorodnov and Martin Dohlus Beam Dynamics Meeting, DESY.
SFLASH  SASE interference setup & optics rough estimation 1d estimation 3d estimation summary.
16 August 2005PT for US BC Task Force1 Two Stage Bunch Compressor Proposal Snowmass WG1 “It’s the latest wave That you’ve been craving for The old ideal.
Optics with SC horizontal vertical BC0BC1BC2 XFEL, design optics.
A bunch compressor design and several X-band FELs Yipeng Sun, ARD/SLAC , LCLS-II meeting.
1 Alternative Bunch Compressor 30 th Sep KNU Eun-San Kim.
Basic Energy Sciences Advisory Committee MeetingLCLS February 26, 2001 J. Hastings Brookhaven National Laboratory LCLS Scientific Program X-Ray Laser Physics:
XFEL Beam Dynamics Meeting Bolko Beutner, DESY Velocity Bunching Studies at FLASH Bolko Beutner, DESY XFEL Beam Dynamics Meeting
T. Limberg Position of the 3rd Harmonic System. Injector (with first Bunch Compression Stage) 2 European XFEL MAC May 2010 T. Limberg.
J. Wu J. Wu working with T.O. Raubenheimer, J. Qiang (LBL), LCLS-II Accelerator Physics meeting April 11, 2012 Study on the BC1 Energy Set Point LCLS-II.
‘S2E’ Study of Linac for TESLA XFEL P. Emma SLAC  Tracking  Comparison to LCLS  Re-optimization  Tolerances  Jitter  CSR Effects.
Design Considerations of table-top FELs laser-plasma accelerators principal possibility of table-top FELs possible VUV and X-ray scenarios new experimental.
S2E (start-to-end) Simulations at DESY T. Limberg TESLA Collaboration Meeting in Frascati, May 2003.
J. Wu March 06, 2012 ICFA-FLS 2012 Workshop Jefferson Lab, Newport News, VA Tolerances for Seeded Free Electron Lasers FEL and Beam Phys. Dept. (ARD/SLAC),
Twin bunches at FACET-II Zhen Zhang, Zhirong Huang, Ago Marinelli … FACET-II accelerator physics workshop Oct. 12, 2015.
Lessons Learned From the First Operation of the LCLS for Users Presented by Josef Frisch For the LCLS March 14, 2010.
Computational Needs for the XFEL Martin Dohlus DESY, Hamburg.
Preliminary Tracking Results through LCLS-II P. Emma et al., Oct. 23, 2013 Thanks to Mark Woodley and Yuri Nosochkov for MAD design work Use Christos Papadopoulos.
Microbunching Instability and Slice Energy Spread
PAL-XFEL Commissioning Plan ver. 1.1, August 2015 PAL-XFEL Beam Dynamics Group.
LSC/CSR Instability Introduction (origin of the instability) CSR/LSC
Beam dynamics for an X-band LINAC driving a 1 keV FEL
Paul Scherrer Institut
XFEL Beam Physics 10/30/2015 Tor Raubenheimer.
Progress activities in short bunch compressors
LCLS Linac Update Brief Overview L1 & BC1 Progress LTU & E-Dump Status Continuing Resolution Impact.
XFEL Bunch Compression System Tuning
ERL working modes Georg Hoffstaetter, Professor Cornell University / CLASSE / SRF group & ERL effort High Current mode High Coherence mode High Buch charge.
LCLS Longitudinal Feedback and Stability Requirements
Simulation Calculations
Z. Huang LCLS Lehman Review May 14, 2009
Linac/BC1 Commissioning P
LCLS Linac Overview E. Bong Lehman Review August 10, 2004
Design of Compression and Acceleration Systems Technical Challenges
LCLS Tracking Studies CSR micro-bunching in compressors
Modified Beam Parameter Range
Laser Heater Integration into XFEL. Update.
LCLS FEL Parameters Heinz-Dieter Nuhn, SLAC / SSRL April 23, 2002
Introduction to Free Electron Lasers Zhirong Huang
Linac Design Update P. Emma LCLS DOE Review May 11, 2005 LCLS.
Coupler Effects in High Energy Part of XFEL Linac
Review of the European XFEL Bunch Compression System: Introduction and Concept Torsten Limberg.
XFEL Beam Dynamics Activity at CANDLE
some tools for longitudinal phase space
setups 7 (low E1) 4 modules 3rd h. L = 8m 12 modules rf = 20 deg
Electron Optics & Bunch Compression
S2E Meeting on Yauhen Kot.
3-BC Working Points for 0.5 and 1.0 nC
Presentation transcript:

BC System – Review Options ● BC2 working point (energy-charge-compr.) ● 2BC (rf-rf-bc-rf-bc-rf) ● table: 2BC (rf-rf-bc-rf-bc-rf) dogleg + 2BC (rf-dog-rf-rf-bc-rf-bc-rf) n3BC (rf-bc-rf-rf-bc-rf-bc-rf) 3BC (rf-rf-bc-rf-rf-bc-rf-bc-rf) rollover compression ● laser heater ● cases in detail peak current projected emittance slice emittance uncorrelated energy spread remaining chirp µ-bunch stability parameter-sensitivity arrival time stability

energy charge compression 1nC 511 MeV 1 GeV 1.5 GeV 2 GeV 2.5 GeV full nC 0.25nC 0.125nC BC2 working point details; see:

2BC (rf-rf-bc-rf-bc-rf) rf knobs r56 knobs compression factors absolute tolerances (amplitude & phase_deg) µ-bunching gain chirp minimal relative tolerances shot noise due to µ-bunching gain

inverse tolerance noise: I rms /A const.: E1, E2, E2’’, E2’’’, r56 coll, C1, C1*C2 tuned: E1’, E2’, r56 BC2, parameter: r56 BC1,  L2 inverse tolerance noise I rms /A

const.: (E1), E2, E2’’, E2’’’, r56 coll, (C1), C1*C2 tuned: E1’, E2’, r56 BC2, parameter: r56 BC1,  L2 20,500 10,500 10,400 20,400 5,400 C1, E1/MeV inverse tolerance nois e I rms /A E1 = 400 MeV r56BC1 = 90mm, C1=5 r56BC2 = 75mm, C2=20  L2 = 10 deg min(ampl_tol) = 0.1% min(phas_tol) = deg noise: I rms = 147 A min(phas_tol) = deg noise: I rms = 260 A

2BC rf (1+3) -bc-rf-bc-rf-c rollover compr. rf (1+3) -bc-rf-bc-rf-c dogleg+2BC rf-d- rf (1+3) -bc-rf-bc-rf-c n3BC rf-bc- rf (1+3) -bc-rf-bc-rf-c 3BC rf (1+3) -bc- rf (1+3) -bc-rf-bc-rf-c E=400MeV 2GeV 17.5GeV C= r56=-90mm -75mm 0.84mm ampl_tol=0.1% ph_tol=0.023deg noise= 147 A  L2 = 10 deg E=500MeV 2GeV 17.5GeV C= r56=-100mm -200mm 0.84mm ampl_tol=0.2% ph_tol=0.055deg small  L2 = 40.5 deg E=130MeV 400MeV 2GeV 17.5GeV C= r56=40mm -90mm -87.2mm 0.84mm ampl_tol=0.11% ph_tol=0.040deg noise= 270 A 130MeV  L2 = 10 deg t566_dog=1m E=130MeV 500MeV 2GeV 17.5GeV C= r56=-30mm -90mm -45.0mm 0.84mm ampl_tol=0.09% ph_tol=0.048deg noise= 95 A 130MeV  L2 = 10 deg E=130MeV 400MeV 2GeV 17.5GeV C= r56=30mm -80mm -83.7mm 0.84mm ampl_tol=0.11% ph_tol=0.045deg noise= 93 A 130MeV  L2 = 10 deg t566_dog=1m

laser heater 1% energy offset  transv. rms beam size overlap of electron and laser beam !!!

cases in detail ● 2BC (rf-rf-bc-rf-bc-rf) ● dogleg + 2BC (rf-dog-rf-rf-bc-rf-bc-rf) ● n3BC (rf-bc-rf-rf-bc-rf-bc-rf) ● 3BC (rf-rf-bc-rf-rf-bc-rf-bc-rf) ● rollover compression

2BC (rf-rf-bc-rf-bc-rf)

dogleg + 2BC (rf-dog-rf-rf-bc-rf-bc-rf)

n3BC (rf-bc-rf-rf-bc-rf-bc-rf)

3BC (rf-rf-bc-rf-rf-bc-rf-bc-rf) const.: E0=130MeV, E0’’, E0’’’,(E1), E2, E2’’, E2’’’, r56 coll, C0=1.5,(C1), C1*C2 tuned: E1’, E2’, r56 BC2, parameter: r56 BC1,  L2 E1 = 400 MeV r56BC0 = 30mm, C0=1.45 r56BC1 = 90mm, C1=6.9 r56BC2 = 45mm, C2=10  L2 = 10 deg min(ampl_tol) = 0.088% min(phas_tol) = deg noise: I rms = 97 A inverse tolerance nois e I rms /A 20,500,5 15,500,5 15,400,5 20,400,5 10,400,5 C1*C0, E1/MeV,r56 BC0 /cm 1.45*6.9,400,3

rollover compression 1nC 50 A 500 A5 kA7 MeV130 MeV500 MeV2 GeV17.5 GeV 4 modules12 modules100 modules 3 rd (heater) (500 MeV) (2 GeV) details; see: min(phas_tol) = deg