1. The Physics Case 2. Present Status 3. Hypersystems in pp Interactions 4. The Experiment Future Experiments on Hypernuclei and Hyperatoms _.

Slides:



Advertisements
Similar presentations
Hypernuclei: A very quick introduction Electroproduction of hypernuclei The experimental Program at Jefferson Lab Update on the analysis of O and Be targets.
Advertisements

Physics with Strange Hadrons at the S torage Ring for A nti- P rotons Physics Highlights Double Hypernuclei H-Dibaryon Properties of Baryons Experimental.
Carsten Schwarz KP2 Physics with anti protons at the future GSI facility Physics program Detector set-up p e - coolerdetector High Energy Storage.
Introduction Glasgow’s NPE research Group uses high precision electromagnetic probes to study the subatomic structure of matter. Alongside this we are.
Hierarchies of Matter matter crystal atom atomic nucleus nucleon quarks m m m m < m (macroscopic) confinement hadron.
Hadron physics with GeV photons at SPring-8/LEPS II
HL-3 May 2006Kernfysica: quarks, nucleonen en kernen1 Outline lecture (HL-3) Structure of nuclei NN potential exchange force Terra incognita in nuclear.
The Next Generation of Hypernucleus and Hyperatom Experiments GSI, Josef Pochodzalla Univ. Mainz.
STORI’02Carsten Schwarz Physics with p at the Future GSI Facility Physics program Detector set-up p e - coolerdetector High Energy Storage Ring HESR High.
HYPERNUCLEAR PHYSICS USING CEBAF BEAM PAST AND FUTURE Liguang Tang Hampton University/JLAB 4 th Workshop on Hadron Physics In China and Opportunities with.
June 2004L. Benussi - DAFNE 2004 First results on hyper-nuclear spectroscopy from the FINUDA experiment at DANE Luigi Benussi INFN, Laboratori.
X. Dong 1 May 10, 2010 NSD Monday Morning Meeting First Observation of an Anti-Hypernucleus Xin Dong for the STAR Collaboration Science 328, 58 (2010)
Study of  -Hypernuclei with Electromagnetic Probes at JLAB Liguang Tang Department of Physics, Hampton University & Jefferson National Laboratory (JLAB)
P461 - particles I1 all fundamental with no underlying structure Leptons+quarks spin ½ while photon, W, Z, gluons spin 1 No QM theory for gravity Higher.
James Ritman Univ. Giessen PANDA: Experiments to Study the Properties of Charm in Dense Hadronic Matter Overview of the PANDA Pbar-A Program The Pbar Facility.
1/12/2007DNP Town Meeting, Joerg Reinhold (FIU) Hypernuclear Spectroscopy Joerg Reinhold Florida International University for the Jefferson Lab Collaborations.
J-PARC: Where is it? J-PARC (Japan Proton Accelerator Research Complex) Tokai, Japan 50 GeV Synchrotron (15  A) 400 MeV Linac (350m) 3 GeV Synchrotron.
LEDA / Lepton Scattering on Hadrons Hypernuclear Spectroscopy: 12 C and 16 O, 9 Be(preliminary) high quality data available. First publication soon. Extension.
HYPERNUCLEAR PHYSICS - N interaction
T.C. Jude D.I. Glazier, D.P. Watts The University of Edinburgh Strangeness Photoproduction: Polarisation Transfer & Cross-Section Measurements.
Polarisation transfer in hyperon photoproduction near threshold Tom Jude D I Glazier, D P Watts The University of Edinburgh.
Antiproton Physics at GSI Introduction The antiproton facility The physics program - Charmonium spectroscopy - Hybrids and glueballs - Interaction of charm.
Double hypernuclei at PANDA M. Agnello, F. Ferro and F. Iazzi Dipartimento di Fisica Politecnico di Torino SUMMARY  The physics of double-hypernuclei;
Brad Sawatzky / JLAB Acknowledgements to Liguang Tang Hampton University/JLAB MESON 2012 Krakow, Poland.
1 Hypernuclear spectroscopy up to medium mass region through the (e,e’K + ) reaction in JLab Mizuki Sumihama For HKS collaboration Department of Physics.
A Study with High Precision on the Electro- production of  and  -hypernuclei in the Full Mass Range Liguang Tang On behalf of the unified JLab hypernuclear.
Hypernuclear Production with Hadronic and Electromagnetic Probes Radhey Shyam Saha Institute of Nuclear Physics, Kolkata, India Z.Zt. Institut f. Theo.
HYPERNUCLEAR PHYSICS Hypernuclei are bound states of nucleons with a strange baryon (  hyperon). Extension of physics on N-N interaction to system with.
Hypernuclear spectroscopy using (K - stop,  0 ) and (e,e’K + ) reactions Doc. dr. sc. Darko Androić University of Zagreb Physics Department.
JLab Hypernuclear Workshop 27 th May 2014 Satoshi N Nakamura, Tohoku University HKS HES Results from Hall-C.
Spectroscopy of  -Hypernuclei by Electroproduction HNSS/HKS Experiments at JLAB L. Tang Hampton University & JLAB FB18, Brazil, August 21-26, 2006.
Liguang Tang Department of Physics, Hampton University & Jefferson National Laboratory (JLAB) July 31 & Aug. 1, 2009, OCPA6 Satellite Meeting on Hadron.
Osamu Hashimoto Department of Physics Tohoku University APCTP Workshop on Strangeness Nuclear Physics (SNP'99) February 19-22, 1999 Reaction spectroscopy.
C. Schwarz Experiments with a cooled p beam on an internal target Physics program Detector set-up p e - coolerdetector High Energy Storage Ring HESR P.
Cross section of elementally process [5] The  -ray spectroscopy of light hypernuclei at J-PARC (E13) K. Shirotori for the Hyperball-J collaboration Department.
The SKS Spectrometer and Spectroscopy of Light  Hypernuclei (E336 and E369) KEK PS Review December 4-5, 2000 Osamu Hashimoto Tohoku University.
Recent Studies of Hypernuclei Formation with Electron Beams at MAMI Patrick Achenbach U Mainz Sept. 2o13.
Hadron Spectroscopy with high momentum beam line at J-PARC K. Ozawa (KEK) Contents Charmed baryon spectroscopy New experiment at J-PARC.
JOINT WORKSHOP JSPS CORE TO CORE SEMINAR and EU SPHERE NETWORK MEETING September 4 -6, 2010 Prague, Czech Republic Weak Decay Studies with FINUDA Stefania.
James Ritman Univ. Giessen PANDA: An Experiment To Investigate Hadron Structure Using Antiproton Beams Overview of the GSI Upgrade Overview of the PANDA.
Electromagnetic probes MAMI, Jefferson Lab & MAX-Lab Daniel Watts University of Edinburgh.
Study of Light Hypernuclei by Pionic Decay at JLAB Liguang Tang Other spokespersons: A. Margaryan, L. Yuan, S.N. Nakamura, J. Reinhold Collaboration: From.
Aye Aye Min, Khin Swe Myint, J. Esmaili & Yoshinori AKAISHI August 23, 2011 By Theoretical Investigation for Production of Double-  Hypernuclei from Stopped.
Magnetic Moment of a  in a Nucleus H. Tamura Tohoku University 1. Introduction 2.  -ray spectroscopy of  hypernuclei and spin-flip B(M1) 3. Experiments.
Lecture 2: The First Second Baryogenisis: origin of neutrons and protons Hot Big Bang Expanding and cooling “Pair Soup” free particle + anti-particle pairs.
Weak decay of  in nuclear medium FCPPL-2015, USTC, April 8-12, 2015 Institute of High Energy Physics Qiang Zhao Institute of High Energy Physics, CAS.
(F.Cusanno, M.Iodice et al,Phys. Rev. Lett (2009). 670 keV FWHM  M. Iodice,F.Cusanno et al. Phys.Rev.Lett. 99, (2007) 12 C ( e,e’K )
Master thesis 2006 Shirotori1 Hypernuclear gamma-ray spectroscopy at J-PARC K1.8 beam line 東北大学大学院理学研究科 原子核物理 白鳥昂太郎.
Study of Light  -Hypernuclei by Spectroscopy of Two Body Weak Decay Pions Liguang Tang Department of Physics, Hampton University Jefferson National Laboratory.
Polarisation transfer in hyperon photoproduction near threshold Tom Jude D I Glazier, D P Watts The University of Edinburgh.
J-PARC でのシグマ陽子 散乱実験の提案 Koji Miwa Tohoku Univ.. Contents Physics Motivation of YN scattering Understanding Baryon-Baryon interaction SU(3) framework Nature.
Structure of light Λ hypernuclei Emiko Hiyama (RIKEN)
J-PARC における 4  He の生成と構造の研究 東北大学 大学院理学研究科 白鳥昂太郎 for the Hyperball-J Collaboration.
1 PHYS 3446 Wednesday, Nov. 13, 2013 Dr. Jae Yu 1. Elementary Particle Properties Quantum Numbers Strangeness Isospin Gell-Mann-Nishijima Relations Production.
Search for neutron-rich hypernuclei in FINUDA: preliminary results presented by M. Palomba 1 for the FINUDA Collaboration 1 INFN and Dipartimento di Fisica,
重离子碰撞中的 ( 反 ) 超核研究 马余刚 中国科学院上海应用物理研究所 引言 RHIC-STAR 的超核测量 – 超氚核构建 – 寿命测量 – 奇异性因子 GSI 超核寿命测量实验简介 超核产生机制研究 关于 H 粒子寻找简介.
Study of  -Hypernuclei with Electromagnetic Probes at JLAB Liguang Tang Department of Physics, Hampton University & Jefferson National Laboratory (JLAB)
Experimental Challenges for Hypernuclear Physics at Panda Patrick Achenbach U Mainz with contributions from the PANDA Hypernuclear groups Sept. 2o11.
Hypernuclear Spectroscopy with Electron Beams
Florida International University, Miami, FL
Study of Hypernuclei with Heavy Ion Beams (HypHI) at GSI Shizu Minami GSI, Germany on behalf of HypHI collaboration Introduction Phase 0 experiment R.
Hyperons in nuclei -- review
Plans for nucleon structure studies at PANDA
The First
LEDA / Lepton Scattering on Hadrons
LEDA / Lepton Scattering on Hadrons
Hypernuclear spectroscopy using (K-stop,p0) and (e,e’K+) reactions
Study of Strange Quark in the Nucleon with Neutrino Scattering
Kernfysica: quarks, nucleonen en kernen
Study of Light Hypernuclei by Pionic Decay at JLAB
Presentation transcript:

1. The Physics Case 2. Present Status 3. Hypersystems in pp Interactions 4. The Experiment Future Experiments on Hypernuclei and Hyperatoms _

1. The Physics Case

baryons tagged with a strange quark as a probe of the nuclear structure nuclei as a femto-laboratory for strange baryons Two Sides of a Coin mesonic decay of hypernuclei mesonic decay of hypernuclei w  N  suppressed by Pauli blocking p F 270MeV/c w  N  p N 100MeV/c free  decay non-mesonic decay of hypernuclei non-mesonic decay of hypernuclei w  N  s N N To use nuclei as a QCD-laboratory we have to understand the laboratory

s=1: -, -hypernuclei nuclear structure, new symmetries the presence of a hyperon may modify the size, shape... of nuclei new specific symmetries Y-N interaction strange baryons in nuclei weak decay s=2: -atoms, -, -hypernuclei nuclear structure baryon-baryon interaction in SU(3) f H-dibaryon s=3: -atom, (-,-, -hypernuclei ?) quadrupole moment of the  Hypernuclei provide a link between nuclear physics and QCD Strange Baryons in Nuclear Systems W su  du sd  dd meson vs. gluon/quark exchange

Weak baryon-baryon interaction non-mesonic weak decay of hypernuclei explore the baryon-baryon weak interaction N-N scattering w N N    s N N w  N    s N N S=0 S=1 NN N only parity violating part of weak interaction parity-conserving part masked by strong interaction only parity violating part of weak interaction parity-conserving part masked by strong interaction parity violating and parity- conserving part of weak, strangeness changing, interaction q~400 MeV/c  probes short distances parity violating and parity- conserving part of weak, strangeness changing, interaction q~400 MeV/c  probes short distances

T. Sakai, K. Shimizu, K. Yazaki Prog.Theor.Phys.Suppl. 137 (2000) H -Particle R.L. Jaffe (1977)   free coalescence  t ~ s   nuclear breeder  t ~ s neutron stars  Nuclei as Femto-Laboratory

H-particle in a nucleus  free H (see e.g. T. Yamada, NP A691 (2001) 250c; (3q)+(3q) quark cluster model ) free H-dibaryon H-dibaryon in B  =12.2 MeV B  =24.0 MeV S=-2 Nuclei and H-dibaryon States Formation of an H-particle in nuclei may modify levels in -nuclei

Contributions to intrinsic quadrupole moment of baryons One-gluon exchange Meson exchange J=1/2 baryons have no spectroscopic quadrupole moment  - Baryon: J=3/2 long mean lifetime 0.82· s only one-gluon contributions to quadrupole moment (A.J. Buchmann Z. Naturforsch. 52 (1997) ) s s s Fundamental Properties of Baryons The  quadrupole moment is an unique testcase for the quark-quark interaction

hyperfine splitting in -atom  electric quadrupole moment of  prediction Q  = ( ) fm 2 E(n=11, l=10  n=10, l=9) ~ 515 keV E Q ~ few keV for Pb spin-orbit  E ls ~ (  Z) 4 l·m  quadrupole  E Q ~ (  Z) 4 Q  m 3  spin-orbit  E ls ~ (  Z) 4 l·m  quadrupole  E Q ~ (  Z) 4 Q  m 3  Q  = fm 2 Q  = fm 2 A very Strange Atom R.M. Sternheimer, M. Goldhaber PRA 8, 2207 (1973)

2. Present Status

strangeness deposition (stopped K -, - ) tagged kaon „beam“ low momentum (T=16MeV) low background also (stopped K -, + )  neutron rich nuclei strangeness production ( +, K + ) ( -, K 0 )  BNL, KEK, (GSI?) p BEAM  1 GeV/c high beam intensity low cross section (1-10 mb/sr) q > 300 MeV/c  large p, L strangeness exchange (K _,   )(K _,   ) BNL, KEK, J-PARC low beam intensity larger cross section (100 mb/sr) magic momentum  low p, L (e,e´K + ), (,K + ) TJNAF, MAMI-C spin-flip amplitude  unnatural parity states new nuclei (p  : 10  Be) polarised beam sub-MeV resolution possible (0.3 MeV) for particle unstable states   substitutional state   non-substitutional state Single Hypernuclei

Tamura et al. Neutron number Proton number Status of Single Hypernuclei high resolution - spectroscopy with germanium detectors B(E2)~R 4  shrinkage of 6 Li core by ~20% high resolution -spectroscopy is crucial to understand the structure of hypernculei KEK, BNL

Multi-Hypernuclei are terra incognita, but they exist ! 1963: Danysz et al.  10 Be 1966: Prowse  6 He 1991: KEK-E176  13 B (or  10 Be) 2001: AGS-E906  4 H (~15); no binding energies 2001: KEK-E373  6 He (Nagara) “  10 Be (Demachi-Yanagi) NAGARA H. Takahashi et al., PRL 87, (2001) Double Hypernuclei

Interpreting B  as  bond energy one has to consider e.g. dynamical change of the core nucleus N spin-spin interaction for non-zero spin of core excited states possible if- or intermediate -nuclei are produced in excited states Q-value difficult to determine (particularly for heavy nuclei) nuclear fragments difficult to identify with usual emulsion technique new concept required  -spectroscopy! What is known? same event

3. Hypersystems in pp Interactions _

  -atoms: x-rays conversion  - (dss) p(uud)  (uds) (uds) Q = 28 MeV Conversion probability approximatly 5-10% Y. Hirata, J. Randrup et al.,  - capture

 _ (Kaidalov & Volkovitsky) quark-gluon string model s u d s d d s d s s s s    00 Use pp Interaction to produce a hyperon “beam” (t~ s) which is tagged by the antihyperon or its decay products _ General Idea

 - capture:  - p   + 28 MeV -- 3 GeV/c Kaons _    trigger p _ 2. Slowing down and capture of   in secondary target nucleus 2. Slowing down and capture of   in secondary target nucleus 1. Hyperon- antihyperon production at threshold 1. Hyperon- antihyperon production at threshold +23MeV  3.  -spectroskopy with Ge-detectors 3.  -spectroskopy with Ge-detectors  Production of Double Hypernuclei

20000 stopped  - K - beam, diamond target neutron detector arrays ( --, 12 C)  12 B + n BNL-AGS E885 few tens 2 decays of 4  H K - beam lineCylindrical Detector System 2 decays BNL-AGS E906 Captured  - per day beam/ targetdevicereactionfacility several hundreds stopped  - (K -,K + )emulsion (K -,K + ) KEK-PS E373 vertex detector + spectrometer vertex detector spectrometer,  =30 msr device 3000 „golden events“ ~ KK trigger (incl. trigger) L =2·10 32, thin target, production vertex  decay vertex p p   GSI-HESR stopped p per sec p p  K * K * K * N  K cold anti- protons <70008·10 6 /sec 5 cm 12 C (K -,K + ) JHF statusbeam/ targetreactionexperiment Competition ¯  ¯ ¯ ¯ ¯ ¯

Expected Count Rate - Ingredients (golden events) luminosity 2·10 32 cm -2 s -1  +  - cross section 2mb for pp  700 Hz p( MeV/c) p 500   + reconstruction probability 0.5 stopping and capture probability p CAP  0.20 total captured  -  3000 / day  - to nucleus conversion probability p   0.05 total  hyper nucleus production  4500 / month gamma emission/event, p   0.5 -ray peak efficiency p GE  0.1 ~7/day „golden“ -ray events ( + trigger) ~ 700/day with KK trigger high resolution -spectroscopy of double hypernuclei will be feasible

 - capture:  - p   + 28 MeV -- 5.5 GeV/c Kaons _    trigger p _ 2. Slow down and capture of   in secondary target nucleus 2. Slow down and capture of   in secondary target nucleus 1. Hyperon- antihyperon production at threshold 1. Hyperon- antihyperon production at threshold +203MeV  3.  -spectroskopy with Ge-detectors 3.  -spectroskopy with Ge-detectors Production of -Atoms

 atoms by  produktion (~35/sec) hyperfine splitting in -atom  electric quadrupole moment of  prediction Q  = ( ) fm 2 E(n=11, l=10  n=10, l=9) ~ 515 keV E Q ~ few keV for Pb taking production rate, stopping probability, capture probability and detection probability into account we expect - spin-orbit  E ls ~ (  Z) 4 l·m  quadrupole  E Q ~ (  Z) 4 Q  m 3  spin-orbit  E ls ~ (  Z) 4 l·m  quadrupole  E Q ~ (  Z) 4 Q  m 3  Q  = fm 2 Q  = fm 2 ~10 detected -transitions per day with high resolution -spectroscopy feasible A very strange Atom R.M. Sternheimer, M. Goldhaber PRA 8, 2207 (1973) Count rate estimate needs more detailed studies!

4. The Experiment

The PANDA Detector hermetic (4) high rate PID (, e, , , K, p) trigger (e, , K, D, ) compact (€) modular Elektronenkühler Injektion Kicker Septum Solid state-micro-tracker thickness ~ 3 cm High rate germanium detector

Summary Hypersystems provide a link between nuclear physics and QCD They allow to study basic properties of strongly interacting systems These unique experiments will be feasible at the GSI-HESR