Steve It’s “Moving Day”….

Slides:



Advertisements
Similar presentations
Conservation of Energy
Advertisements

Chapter 5: Work and Energy
WORK, ENERGY & MOMENTUM.
PHYSICS UNIT 4: ENERGY & MOMENTUM
Work Done by a Constant Force
6-7 Problem Solving Using Conservation of Mechanical Energy
Sect. 8-3: Mechanical Energy & It’s Conservation.
Chapter 6: Conservation of Energy
Work, Energy, And Power m Honors Physics Lecture Notes.
Work and Energy.
Momentum Impulse, Linear Momentum, Collisions Linear Momentum Product of mass and linear velocity Symbol is p; units are kgm/s p = mv Vector whose direction.
Chapter 9:Linear Momentum 8-4 Problem Solving Using Conservation of Mechanical Energy 8-5 The Law of Conservation of Energy 8-6 Energy conservation with.
Conservation of Energy
Chapter 5 Work and Energy
Chapter 6 Work & Energy.
1© Manhattan Press (H.K.) Ltd. Work Energy Energy 3.6 Work, energy and power Power Power.
Dr. Steve Peterson Physics 1025F Mechanics ENERGY Dr. Steve Peterson
WORK In order for work to be done, three things are necessary:
© 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
WORK In order for work to be done, three things are necessary:
A.S – What is Energy?  Energy is a measure of an object’s ability to cause a change in itself and/or its surroundings In other words,
Chapter 5 – Work and Energy If an object is moved by a force and the force and displacement are in the same direction, then work equals the product of.
Work, Power, Energy Work.
WORK AND ENERGY 1. Work Work as you know it means to do something that takes physical or mental effort But in physics is has a very different meaning.
by the normal force acting on a sliding block?
Chapter 6 Work and Energy.
Chapter 5 Work and Energy. Review  x = v i  t + ½ a  t 2  x = ½ (v i + v f )  t v f = v i + a  t v f 2 = v i 2 + 2a  x.
Copyright © 2010 Pearson Education, Inc. Chapter 7 Work and Kinetic Energy.
Potential Energy and Conservative Forces
Chapter 5 Work and Energy. 6-1 Work Done by a Constant Force The work done by a constant force is defined as the distance moved multiplied by the component.
Mechanics Work and Energy Chapter 6 Work  What is “work”?  Work is done when a force moves an object some distance  The force (or a component of the.
Energy m m Physics 2053 Lecture Notes Energy.
1 Physics for Scientists & Engineers, with Modern Physics, 4 th edition Giancoli Piri Reis University / Physics -I.
Chapter 6 Work and Energy. Units of Chapter 6 Work Done by a Constant Force Work Done by a Varying Force Kinetic Energy, and the Work-Energy Principle.
Work and Energy.
Energy. Analyzing the motion of an object can often get to be very complicated and tedious – requiring detailed knowledge of the path, frictional forces,
NAZARIN B. NORDIN What you will learn: Define work, power and energy Potential energy Kinetic energy Work-energy principle Conservation.
Energy and Energy Conservation. Energy Two types of Energy: 1. Kinetic Energy (KE) - energy of an object due to its motion 2. Potential Energy (PE) -
Work and Energy.
Reading and Review. A mass attached to a vertical spring causes the spring to stretch and the mass to move downwards. What can you say about the spring’s.
Momentum and Collisions Unit 6. Momentum- (inertia in motion) Momentum describes an object’s motion Momentum equals an object’s mass times its velocity.
Lecture 11: Potential Energy & Energy Conservation.
Ch. 6, Work & Energy, Continued. Summary So Far Work-Energy Theorem: W net = (½)m(v 2 ) 2 - (½)m(v 1 ) 2   KE Total work done by ALL forces! Kinetic.
Work and EnergySection 1 Preview Section 1 WorkWork Section 2 EnergyEnergy Section 3 Conservation of EnergyConservation of Energy Section 4 PowerPower.
WORK A force that causes a displacement of an object does work on the object. W = F d Work is done –if the object the work is done on moves due to the.
Work, Energy & Power AP Physics B. There are many different TYPES of Energy. Energy is expressed in JOULES (J) 4.19 J = 1 calorie Energy can be expressed.
Work and Energy. October 2012.
Examples: Mechanical Energy Conservation
Work, Power & Energy How do they relate? (Stone, Ebener, Watkins)
 Work  Energy  Kinetic Energy  Potential Energy  Mechanical Energy  Conservation of Mechanical Energy.
Energy Notes Energy is one of the most important concepts in science. An object has energy if it can produce a change in itself or in its surroundings.
PHY 101: Lecture Work Done by a Constant Force
Chapter 5 Work and Energy. Question A crate of mass 10 kg is on a ramp that is inclined at an angle of 30⁰ from the horizontal. A force with a magnitude.
Physics 1 SSS 1 Kinematics Dynamics Work/Energy/Power.
Energy MechanicalDissipated GravitationalElastic KineticPotential Energy – a property of an object which can be stored in different ways and transferred.
French philosopher, mathematician and physicist Rene Descartes thought of motion as being quantifiable…but not solely based on an object’s.
Copyright © 2009 Pearson Education, Inc. Lecture 4b Conservation of Energy Power Efficiency 1.
Chapter 6 Work and Energy © 2014 Pearson Education, Inc. No need to write information in red.
Work & Energy w/o Machines
Chapter 6 Work and Energy
Work and Energy Chapter 6.
Work Done by a Constant Force
Different kinds of energy
Work Done by a Constant Force
Chapter 5 Work and Energy
Unit 7: Work, Power, and Mechanical Energy.
Gravitational Potential Energy and Reference level
Conversion Between Potential and Kinetic energy
Work & Energy.
Energy and Momentum.
Presentation transcript:

Steve It’s “Moving Day”…. Dave tries to push a refrigerator over thick carpet. He pushes hard, but it doesn’t budge. Steve pushes an identical refrigerator across a wooden floor. He also pushes hard, and it moves easily. Who does more “work”? Steve

Θ= angle between the force and distance Steve moved the refrigerator….Dave didn’t. Work – what is accomplished when a force acts on an object and that force causes the object to move over a certain distance W = FdcosΘ W = Work (Joule) F = force (N) d = distance (m) Θ= angle between the force and distance

Is work being done by the man on the groceries by holding it in place? Is work being done by the Earth on the groceries? The net work in the vertical direction on the groceries is zero (net force = 0) Is work being done by the man on the groceries if he walks forward? No…his force on the bag is perpendicular to motion

Work is a scalar quantity -- it only has magnitude Work is a scalar quantity -- it only has magnitude. However, there is a difference between negative work and positive work. The hammer does positive work on the nail (same direction as displacement) The nail does negative work on the hammer (opposite direction of displacement)

A person pulls a 50-kg crate 40 m along a horizontal floor with a constant force of 100 N at an angle of 37 . The floor is rough and exerts a friction force of 50 N. Determine the work done by each force acting on the crate and the net work being done on the crate.

If an object’s speed changes, its kinetic energy changes If a net work is done on the bus above, what do we know about the bus It moves A force is applied It accelerates If an object’s speed changes, its kinetic energy changes Kinetic energy – energy of motion (measured in joules)

(Work-Energy Theorem) KE = 1/2 mv2 KE = kinetic energy (J) m = mass (kg) v = speed (m/s) Since work causes an object’s speed to change, it causes its kinetic energy to change (Work-Energy Theorem) ΣW = ∆KE

ΣW = 1/2 mvf2 -1/2 mvi2 If ΣW (Wnet) > 0, KE increases (object speeds up) If ΣW (Wnet) < 0, KE decreases (object slows down)

A baseball (m = 140 g) traveling 32 m/s moves a fielder’s glove backward 25 cm when the ball is caught. What was the average force exerted by the ball on the glove?

Power If you press a barbell over your head with a constant speed…. Are you doing work on the barbell? Yes Is gravity doing work on the barbell? Yes (negative) What is the net work on the barbell? Zero (no a, no ΣF) If you faster reps, you feel more fatigued. Why? Your rate of doing work is increasing.

Power = work / time P = W / t P = power (Watt) W = work (J) T = time (s) 1 Horsepower = 550 ft lb/s = 746 W

P = F d / t P = F v Since we know W = Fd, P = power (W) F = force (N) v = average speed (m/s)

A pump is to lift 18. 0 kg of water per minute to a height of 3. 60 m A pump is to lift 18.0 kg of water per minute to a height of 3.60 m. Assuming the pump moves the water at a constant speed, what power rating (watts) should the pump motor have?

A car is traveling up a 10° incline at a constant speed of 80 km/h A car is traveling up a 10° incline at a constant speed of 80 km/h. The car has a mass of 1400 kg and the frictional force of the road on the car is 700 N. How much horesepower does the motor need in order to move at that speed?

Forms of Energy Energy Mechanical Nonmechanical Kinetic Potential Gravitational Elastic Potential energy – energy associated with forces that depend on the position of an object relative to its surroundings

Gravitational Potential Energy An object gains energy when work is done to it to lift it off the ground to a position above the ground. W = Fadcosθ If object is raised at a constant speed, Fa = Fg. Therefore,

W = Fd = PEG= mgh PEg = gravitational potential energy (J) m = mass (kg) g = gravitational acceleration (m/s2) h = height (m)

A roller coaster with a mass of 1000 kg travels up a 25 m hill and then back down 10 m. What is the potential energy at the top of the hill and at the ending position on the other side?

Elastic Potential Energy A spring gains energy when work is done to it to compress or stretch it from its natural position Hooke’s Law Fp = kx Fs = -kx k = spring constant (N/m) x = amount of compression/tension (m) Fp increases as a spring is compressed, so average force is F = ½(0 + kx) = ½ kx. Therefore,

W = Fd = PES = ½kx2 PEs = elastic potential energy (J) k = spring constant (N/m) x = amount of compression/tension (m)

A spring with a force constant of 5. 2 N/m has a relaxed length of 2 A spring with a force constant of 5.2 N/m has a relaxed length of 2.45 m. When a mass is attached to the end of the spring and allowed to come to rest, the vertical length of the spring is 3.57 m. Calculate the elastic potential energy stored in the spring.

Principle of Conservation of Mechanical Energy If only conservative forces are acting , the total mechanical energy of a system neither increases nor decreases in any process. It stays constant – it is conserved. Conservative forces – work done does not depend on path; just the initial and final positions (gravitational force, elastic force) Nonconservative forces – work done depends on path taken (friction force, air resistance, applied force, tension force)

E = PE + KE E1 = E2 PE1 + KE1 = PE2 + KE2 An object’s initial E at time 1 is equal to an objects final E at time 2 assuming no nonconservative forces acting. E1 = E2 PE1 + KE1 = PE2 + KE2

If the original height of a rock is 3 If the original height of a rock is 3.0 m, calculate the rock’s speed when it has fallen 2.0 m and the speed right before it hits the ground.

A dart of mass 0.100 kg is pressed against the spring of a toy dart gun. The spring (k = 250 N/m) is compressed 6.0 cm and released. If the dart detaches from the spring when the spring reaches its natural length, what speed does the dart acquire?

Law of Conservation of Energy The total energy is neither increased nor decreased in any process. Energy can be transformed from one for to another, and transferred from one object to another, but the total amount remains constant. In a process, mechanical energy may be “lost” or “gained” due to the work that is done by nonconservative forces, but it simply is converted into or converted from another type of energy (heat, light, electric energy, etc.)

WNC = ∆KE + ∆PE The work done by nonconservative forces (to produce heat, light, etc.) is equal to the sum of the change in kinetic energy and the change in potential energy.

You drop a 2. 0-kg ball from a height of 2 You drop a 2.0-kg ball from a height of 2.0 m and it bounces back to a height of 1.5 m. How much energy is “lost” in the bounce? What is the ball’s speed at the instant it leaves the ground after the bounce?

An SUV and a sports car are both moving 60 mph down the highway. Which one has more kinetic energy? Which one has more momentum? Our intuition tells us that the SUV has more momentum because it is larger.

Is there any way to give the sports car more momentum so that it eventually is the same as the SUV? How would we make their kinetic energies equal? Increase the speed of the sports car. The same is true to make their momentums the same – increase the velocity of the sports car. Momentum - the product of an object’s mass and velocity

p = m x v p = momentum (kg x m/s) m = mass (kg) v = velocity (m/s) Momentum is different from energy in that it is a vector quantity. Direction matters! How would we change the car’s momentum? Accelerate the car by applying more force.

Σ F = ma Σ F = m(∆v/∆t) Σ F = (m∆v)/∆t Σ F = ∆p/∆t Newton’s Second Law – the net force applied to an object is equal to the rate of the change of momentum of an object

A tennis ball with a mass of 0 A tennis ball with a mass of 0.060 kg leaves a tennis racket on the serve with a velocity of 55 m/s. If the racket is in contact with the ball for 0.004 seconds, what is the force that is exerted on the ball?

Water leaves a hose at a rate of 1. 5 kg/s with a velocity of 20 m/s Water leaves a hose at a rate of 1.5 kg/s with a velocity of 20 m/s. If the water is aimed at a car window which stops it, what is the force exerted by the car on the water?

Impulse When you participate in a water balloon toss, how do you catch a water balloon? “Soft Hands” Your catch is spread over over a larger amount of time. If you were to abruptly catch the balloon, it would break.

F = ∆p/∆t F∆t = ∆p To change an object’s momentum, if the time decreases, the force has to increase (or vice versa) Impulse – the product of a force exerted on an object and the time over which the force acts

A 12-kg hammer strikes a nail at a velocity of 8 A 12-kg hammer strikes a nail at a velocity of 8.5 m/s and comes to rest in a time interval of 8.0 ms. What is the impulse given to the nail? What is the average force acting on the nail?

Law of Conservation of Momentum The total momentum of an isolated system of objects remains constant. In a system with numerous objects, the individual momentums of the objects may change as the objects interact with each other, but the sum of their momenta remains constant. mAvA0 + mBvB0 = mAvA +mBvB

Initial Momentum = Final Momentum Explosions Initially, a system has no momentum. Then, some event happens causing objects to move in various directions. Regardless of the direction or motion, all of the resultant momentums have to cancel out to equal zero (to match the initial conditions). Initial Momentum = Final Momentum mv = mAvA + mBvB

What is the recoil velocity of a 5. 0-kg rifle that shoots a 0 What is the recoil velocity of a 5.0-kg rifle that shoots a 0.020-kg bullet at a speed of 620 m/s?

Initial Momentum = Final Momentum Elastic Collisons Initially, at least one object of a system has momentum. It then hits another object causing each object to change its velocity. All of the momentums of the objects after the collision will equal the momentums of the objects before the collision. Initial Momentum = Final Momentum mAvA0 + mBvB0 = mAvA +mBvB

½mAvA02 + ½mBvB02 = ½mAvA2 + ½mBvB2 Because the collision is elastic, not only is momentum conserved, but all mechanical energy is conserved. ½mAvA02 + ½mBvB02 = ½mAvA2 + ½mBvB2 mAvA02 + mBvB02 = mAvA2 + mBvB2 mAvA02 - mAvA2 = mBvB2 - mBvB02 mA(vA02 - vA2) = mB(vB2 - vB02) mA(vA0 - vA)(vA0 + vA) = mB(vB - vB0)(vB + vB0)

mA(vA0 - vA)(vA0 + vA) = mB(vB - vB0)(vB + vB0) Back to momentum… mAvA0 + mBvB0 = mAvA +mBvB mAvA0 - mAvA = mBvB - mBvB0 mA(vA0 - vA) = mB(vB - vB0) Combining both equations… vA0 + vA = vB + vB0 vA0 - vB0 = vB – vA (for elastic collisions)

A ball of mass 0. 440 kg moving east with a speed of 2 A ball of mass 0.440 kg moving east with a speed of 2.20 m/s collides head-on with a 0.220-kg ball at rest. If the collision is perfectly elastic, what will be the velocity of each ball after the collision?

Initial Momentum = Final Momentum Inelastic Collisons Inelastic collisions are ones where two separate objects collide and stick together moving together as one unit afterward. Momentum is conserved in these types of collisions. Initial Momentum = Final Momentum mAvA + mBvB = (mA + mB)v Mechanical energy is not conserved in these types of collisions (deformation, heat, etc.)

A bullet is fired vertically into a 1 A bullet is fired vertically into a 1.40-kg block of wood at rest directly above it. If the bullet has a mass of 29.0 g and a speed of 510 m/s, how high will the block rise after the bullet becomes embedded in it?