ASSIMILATION OF SATELLITE TRACER DATA AND OPTIMISATION USING SELF-CONSISTENCY DIAGNOSTICS Saad Rharmili, Slimane Bekki, SA-IPSL, CNRS/UPMC.

Slides:



Advertisements
Similar presentations
Variational data assimilation and forecast error statistics
Advertisements

Tuning and Validation of Ocean Mixed Layer Models David Acreman.
Spatial autoregressive methods
Introduction to Data Assimilation Peter Jan van Leeuwen IMAU.
Methane inversion from satellite, TRANSCOM meeting, Jena,12-15 May 2003 Inversion strategy 4D-var method adjoint model of TM3 CH4-only version has been.
Recent developments and perspectives in meteorological data assimilation Jean Pailleux (Météo-France /CNRM / Toulouse) Presentation.
Setup of 4D VAR inverse modelling system for atmospheric CH 4 using the TM5 adjoint model Peter Bergamaschi Climate Change Unit Institute for Environment.
Page 1© Crown copyright 2005 Numerical space weather prediction: can meteorologists forecast the way ahead? Dr Mike Keil, Dr Richard Swinbank and Dr Andrew.
Ozone Assimilation in the Chemistry Transport Model CHIMERE using an Ensemble Kalman Filter (EnKF) : Preliminary tests over the Ile de France region 2.
Quantitative retrievals of NO 2 from GOME Lara Gunn 1, Martyn Chipperfield 1, Richard Siddans 2 and Brian Kerridge 2 School of Earth and Environment Institute.
1 アンサンブルカルマンフィルターによ る大気海洋結合モデルへのデータ同化 On-line estimation of observation error covariance for ensemble-based filters Genta Ueno The Institute of Statistical.
Data assimilation of trace gases in a regional chemical transport model: the impact on model forecasts E. Emili 1, O. Pannekoucke 1,2, E. Jaumouillé 2,
Data assimilation schemes in numerical weather forecasting and their link with ensemble forecasting Gérald Desroziers Météo-France, Toulouse, France.
Estimation of daily CO 2 fluxes over Europe by inversion of atmospheric continuous data C. Carouge and P. Peylin ; P. Bousquet ; P. Ciais ; P. Rayner Laboratoire.
Methane inversion from satellite, TRANSCOM workshop, Jena, May 2003 Inverse modelling of methane sources and sinks using satellite observations Jan.
A Variational Carbon Data Assimilation System (CDAS-4DVar)
Some Innovative Applications and Approaches Using Nudging Four Dimensional Data Assimilation: Lili Lei and David R. Stauffer Dept. of Meteorology, Penn.
Advanced data assimilation methods with evolving forecast error covariance Four-dimensional variational analysis (4D-Var) Shu-Chih Yang (with EK)
Carbon Flux Bias Estimation at Regional Scale using Coupled MLEF-PCTM model Ravindra Lokupitiya Department of Atmospheric Science Colorado State University.
Assimilation of Aerosol Optical Depth Gé Verver 1, Bas Henzing 1, Peter van Velthoven 1 Cristina Robles-Gonzalez 2, Gerrit de Leeuw 2 1 KNMI, De Bilt,
Slide 1 Evaluation of observation impact and observation error covariance retuning Cristina Lupu, Carla Cardinali, Tony McNally ECMWF, Reading, UK WWOSC.
The Centre for Australian Weather and Climate Research A partnership between CSIRO and the Bureau of Meteorology Oscar Alves, Yonghong Yin, Robin Wedd,
Eskes, Leiden workshop, 10 Nov Uncertainty characterisation in atmospheric chemistry data assimilation and emission estimation Henk Eskes KNMI,
Experiments with the microwave emissivity model concerning the brightness temperature observation error & SSM/I evaluation Henning Wilker, MIUB Matthias.
Lecture 11: Kalman Filters CS 344R: Robotics Benjamin Kuipers.
Numerical simulations of the severe rainfall in Pula, Croatia, on 25 th September 2010 Antonio Stanešić, Stjepan Ivatek-Šahdan, Martina Tudor and Dunja.
The ELDAS system implementation and output production at Météo-France Gianpaolo BALSAMO, François BOUYSSEL, Jöel NOILHAN ELDAS 2nd progress meetin – INM.
Computational Issues: An EnKF Perspective Jeff Whitaker NOAA Earth System Research Lab ENIAC 1948“Roadrunner” 2008.
Andrew Poje (1), Anne Molcard (2,3), Tamay Ö zg Ö kmen (4) 1 Dept of Mathematics, CSI-CUNY,USA 2 LSEET - Universite de Toulon et du Var, France 3 ISAC-CNR.
Federal Department of Home Affairs FDHA Federal Office of Meteorology and Climatology MeteoSwiss High-resolution data assimilation in COSMO: Status and.
« Data assimilation in isentropic coordinates » Which Accuracy can be achieved using an high resolution transport model ? F. FIERLI (1,2), A. HAUCHECORNE.
Ocean Data Variational Assimilation with OPA: Ongoing developments with OPAVAR and implementation plan for NEMOVAR Sophie RICCI, Anthony Weaver, Nicolas.
Potential benefits from data assimilation of carbon observations for modellers and observers - prerequisites and current state J. Segschneider, Max-Planck-Institute.
Simulation Experiments for GEO-CAPE Regional Air Quality GEO-CAPE Workshop September 22, 2009 Peter Zoogman, Daniel J. Jacob, Kelly Chance, Lin Zhang,
Data Assimilation Working Group Dylan Jones (U. Toronto) Kevin Bowman (JPL) Daven Henze (CU Boulder) 1 IGC7 4 May 2015.
Analysis of TraceP Observations Using a 4D-Var Technique
Maximum Likelihood Estimation and Simplified Kalman Filter tecniques for real time Data Assimilation.
Research Vignette: The TransCom3 Time-Dependent Global CO 2 Flux Inversion … and More David F. Baker NCAR 12 July 2007 David F. Baker NCAR 12 July 2007.
Development of an EnKF to estimate CO 2 fluxes from realistic distributions of X CO2 Liang Feng, Paul Palmer
Toward a mesoscale flux inversion in the 2005 CarboEurope Regional Experiment T.Lauvaux, C. Sarrat, F. Chevallier, P. Ciais, M. Uliasz, A. S. Denning,
INVERSE MODELING OF ATMOSPHERIC COMPOSITION DATA Daniel J. Jacob See my web site under “educational materials” for lectures on inverse modeling atmospheric.
Assimilating AIRNOW Ozone Observations into CMAQ Model to Improve Ozone Forecasts Tianfeng Chai 1, Rohit Mathur 2, David Wong 2, Daiwen Kang 1, Hsin-mu.
Data assimilation and forecasting the weather (!) Eugenia Kalnay and many friends University of Maryland.
Deguillaume L., Beekmann M., Menut L., Derognat C.
INVERSE MODELING TECHNIQUES Daniel J. Jacob. GENERAL APPROACH FOR COMPLEX SYSTEM ANALYSIS Construct mathematical “forward” model describing system As.
Local Predictability of the Performance of an Ensemble Forecast System Liz Satterfield and Istvan Szunyogh Texas A&M University, College Station, TX Third.
École Doctorale des Sciences de l'Environnement d’Île-de-France Année Universitaire Modélisation Numérique de l’Écoulement Atmosphérique et Assimilation.
Data assimilation: a powerful tool for atmospheric chemistry Jeff Xia.
1 A multi-scale three-dimensional variational data assimilation scheme Zhijin Li,, Yi Chao (JPL) James C. McWilliams (UCLA), Kayo Ide (UMD) The 8th International.
Henk Eskes, ERS-ENVISAT symposium 2004 Retrieval, validation and assimilation of SCIAMACHY ozone columns Henk Eskes, Ronald van der A, Ellen Brinksma,
Colorado Center for Astrodynamics Research The University of Colorado 1 STATISTICAL ORBIT DETERMINATION Kalman Filter with Process Noise Gauss- Markov.
École Doctorale des Sciences de l'Environnement d’ Î le-de-France Année Modélisation Numérique de l’Écoulement Atmosphérique et Assimilation.
© Copyright QinetiQ limited 2006 On the application of meteorological data assimilation techniques to radio occultation measurements of.
École Doctorale des Sciences de l'Environnement d’Île-de-France Année Universitaire Modélisation Numérique de l’Écoulement Atmosphérique et Assimilation.
Demonstration and Comparison of Sequential Approaches for Altimeter Data Assimilation in HYCOM A. Srinivasan, E. P. Chassignet, O. M. Smedstad, C. Thacker,
June 20, 2005Workshop on Chemical data assimilation and data needs Data Assimilation Methods Experience from operational meteorological assimilation John.
Carbon Cycle Data Assimilation with a Variational Approach (“4-D Var”) David Baker CGD/TSS with Scott Doney, Dave Schimel, Britt Stephens, and Roger Dargaville.
ECMWF/EUMETSAT NWP-SAF Satellite data assimilation Training Course
ASEN 5070: Statistical Orbit Determination I Fall 2014
Adjoint modeling and applications
Meteorological and Hydrological Service of Croatia
ECMWF/EUMETSAT NWP-SAF Satellite data assimilation Training Course
Henk Eskes, Jan Fokke Meirink, Ankie Piters
Assimilating Tropospheric Emission Spectrometer profiles in GEOS-Chem
The ECMWF weak constraint 4D-Var formulation
Error statistics in data assimilation
Comparison of different combinations of ensemble-based and variational data assimilation approaches for deterministic NWP Mark Buehner Data Assimilation.
Project Team: Mark Buehner Cecilien Charette Bin He Peter Houtekamer
Hartmut Bösch and Sarah Dance
Sarah Dance DARC/University of Reading
Presentation transcript:

ASSIMILATION OF SATELLITE TRACER DATA AND OPTIMISATION USING SELF-CONSISTENCY DIAGNOSTICS Saad Rharmili, Slimane Bekki, SA-IPSL, CNRS/UPMC

Assimilation of MLS O3 data in MIMOSA  High resolution isentropic transport model (there is another version of the model with chemistry) .  Forced with meteorological analysis (ECMWF, NCEP)  Sequential assimilation of tracer observations (MLS O3)  Assimilation window (6h): observations advected forward and backward to the assimilation time.

Frequency of MLS observations 1 day (about 1000 profiles) 10 days

Initial stateAnalysis model Observations model MIMOSA Sequential assimilation scheme

Kalman Filter M : Model operator Q : covariance matrix of model errors (adjust model error growth) Analysis: Analysis Error : Time evolution of state vector and background errors: Innovation Forecast H : interpolation operator K : gain matrix B t : covariance matrix of background errors (adjust correlation lengths) O : covariance matrix of observation errors (adjust representativeness errors)

Parameterisation of the model error growth and of the representativeness error b ii : diagonal elements of B Covariance matrix of observation errors (assumed diagonal) Time evolution of background error: Gain matrix: Parameter 1 : t 0 (model error growth) Parameter 2 : r 0 (representativeness error)

Parameterisation of correlation function Non-diagonal elements of B: Correlation function = f(distance) f ij correlation function between points i and j Parameter 3 : D 0, (distance correlation length)

RESIDU D’ASSIMILATION: VECTEUR INNOVATION ~ 0 (si coherent) Covariance du vecteur innovation: si coherent

COHERENCE INTERNE: TEST DE X 2 Erreurs a posteriori Erreurs a priori si coherent

AUTRES RESIDUS D’ASSIMILATION

Diagnostique d’erreur de prévision Diagnostique d’erreur d’observation AUTRES TESTS DE COHERENCE INTERNE

Optimisation of the assimilation system according to two diagnostics RMS(OmF) Self-consistency test: OmF versus a-priori errors O and B Assimilation of MLS data (about 1000 profiles/day) into MIMOSA for several isentropic levels between 400 and 900K from 15 to 25/08/93 -> Recherche des paramètres optimums to, ro and Do par minimisation RMS( OmF) et/ou (X 2 /p -1).

QUELQUES RESULTATS DE MINIMISATION RMS(OmF) minimum et/ou (X 2 /p – 1) minimum -> to, ro et Do varient

MINIMISATION GLOBALE SOUS CONTRAINTE RMS(OmF) minimum avec X 2 /p=1 -> to, ro et Do varient

2 GROS PROBLEMES 1/ X 2 < 1 2/ Do = f(frequence des obs.) determiner Do (indépendant de to et ro)

RMS(OmF) minimum avec X 2 /p=1 -> to, ro et Do varient Erreurs de mesure expérimentale et de représentativité sont modélisées même paramètre:

2 GROS PROBLEMES 1/ X 2 < 1 2/ Do (correlation) = f(frequence des obs.) determiner Do (indépendant de to et ro)

METHODE NMC: LONGUEUR DE CORRELATION

MINIMISATION GLOBALE SOUS CONTRAINTE RMS(OmF) minimum avec Xo 2 /p et Xf 2 /p =1 -> to et ro (Do fixe)

CONCLUSIONS