Lecture 8: MIPS Instruction Set

Slides:



Advertisements
Similar presentations
Henk Corporaal TUEindhoven 2011
Advertisements

1 Lecture 3: MIPS Instruction Set Today’s topic:  More MIPS instructions  Procedure call/return Reminder: Assignment 1 is on the class web-page (due.
C OMPUTER O RGANIZATION AND D ESIGN The Hardware/Software Interface 5 th Edition Chapter 2 Instructions: Language of the Computer.
Lecture 5: MIPS Instruction Set
CS/COE0447 Computer Organization & Assembly Language
The University of Adelaide, School of Computer Science
Lecture 20: 11/12/2002CS170 Fall CS170 Computer Organization and Architecture I Ayman Abdel-Hamid Department of Computer Science Old Dominion University.
Lecture 9: MIPS Instruction Set
MIPS ISA-II: Procedure Calls & Program Assembly. (2) Module Outline Review ISA and understand instruction encodings Arithmetic and Logical Instructions.
MIPS ISA-II: Procedure Calls & Program Assembly. (2) Module Outline Review ISA and understand instruction encodings Arithmetic and Logical Instructions.
1 Procedure Calls, Linking & Launching Applications Lecture 15 Digital Design and Computer Architecture Harris & Harris Morgan Kaufmann / Elsevier, 2007.
Chapter 2 — Instructions: Language of the Computer — 1 Branching Far Away If branch target is too far to encode with 16-bit offset, assembler rewrites.
ECE 232 L6.Assemb.1 Adapted from Patterson 97 ©UCBCopyright 1998 Morgan Kaufmann Publishers ECE 232 Hardware Organization and Design Lecture 6 MIPS Assembly.
1 Lecture 4: Procedure Calls Today’s topics:  Procedure calls  Large constants  The compilation process Reminder: Assignment 1 is due on Thursday.
Lecture 6: MIPS Instruction Set Today’s topic –Control instructions –Procedure call/return 1.
Assembly Code Example Selection Sort.
The University of Adelaide, School of Computer Science
Computer Organization CS224
Computer Architecture CSCE 350
1 Nested Procedures Procedures that don't call others are called leaf procedures, procedures that call others are called nested procedures. Problems may.
CPS3340 COMPUTER ARCHITECTURE Fall Semester, /17/2013 Lecture 12: Procedures Instructor: Ashraf Yaseen DEPARTMENT OF MATH & COMPUTER SCIENCE CENTRAL.
CS1104 – Computer Organization PART 2: Computer Architecture Lecture 4 Assembly Language Programming 2.
Procedures II (1) Fall 2005 Lecture 07: Procedure Calls (Part 2)
The University of Adelaide, School of Computer Science
Apr. 12, 2000Systems Architecture I1 Systems Architecture I (CS ) Lecture 6: Branching and Procedures in MIPS* Jeremy R. Johnson Wed. Apr. 12, 2000.
The University of Adelaide, School of Computer Science
CS3350B Computer Architecture Winter 2015 Lecture 4
Lec 9Systems Architecture1 Systems Architecture Lecture 9: Assemblers, Linkers, and Loaders Jeremy R. Johnson Anatole D. Ruslanov William M. Mongan Some.
MIPS Coding. Exercise – the bubble sort 5/8/2015week04-3.ppt2.
1 Lecture 5: MIPS Examples Today’s topics:  the compilation process  full example – sort in C Reminder: 2 nd assignment will be posted later today.
Computer Structure - The Instruction Set (2) Goal: Implement Functions in Assembly  When executing a procedure (function in C) the program must follow.
COMPUTER ARCHITECTURE & OPERATIONS I Instructor: Hao Ji.
COMPUTER ARCHITECTURE & OPERATIONS I Instructor: Hao Ji.
Lecture 7: MIPS Instruction Set Today’s topic –Procedure call/return –Large constants Reminders –Homework #2 posted, due 9/17/
13/02/2009CA&O Lecture 04 by Engr. Umbreen Sabir Computer Architecture & Organization Instructions: Language of Computer Engr. Umbreen Sabir Computer Engineering.
Lecture 8. MIPS Instructions #3 – Branch Instructions #1 Prof. Taeweon Suh Computer Science Education Korea University 2010 R&E Computer System Education.
Adapted from Computer Organization and Design, Patterson & Hennessy, UCB ECE232: Hardware Organization and Design Part 7: MIPS Instructions III
1 Branches and Procedure Calls Lecture 14 Digital Design and Computer Architecture Harris & Harris Morgan Kaufmann / Elsevier, 2007.
April 23, 2001Systems Architecture I1 Systems Architecture I (CS ) Lecture 9: Assemblers, Linkers, and Loaders * Jeremy R. Johnson Mon. April 23,
Lecture 4: MIPS Instruction Set
Computer Architecture CSE 3322 Lecture 4 crystal.uta.edu/~jpatters/cse3322 Assignments due 9/15: 3.7, 3.9, 3.11.
Chapter 2 CSF 2009 The MIPS Assembly Language. Stored Program Computers Instructions represented in binary, just like data Instructions and data stored.
Computer Architecture CSE 3322 Lecture 4 Assignment: 2.4.1, 2.4.4, 2.6.1, , Due 2/10/09
Chapter 2 — Instructions: Language of the Computer — 1 Conditional Operations Branch to a labeled instruction if a condition is true – Otherwise, continue.
1 Lecture 6: Assembly Programs Today’s topics:  Large constants  The compilation process  A full example  Intro to the MARS simulator.
Adapted from Computer Organization and Design, Patterson & Hennessy, UCB ECE232: Hardware Organization and Design Part 8: MIPS Procedures and Recursion.
DR. SIMING LIU SPRING 2016 COMPUTER SCIENCE AND ENGINEERING UNIVERSITY OF NEVADA, RENO Session 14, 15 Addressing Mode.
1 Lecture 2: MIPS Instruction Set Today’s topic:  MIPS instructions Reminder: sign up for the mailing list cs3810 Reminder: set up your CADE accounts.
Lecture 5: Procedure Calls
Computer Architecture & Operations I
Lecture 6: Assembly Programs
Lecture 7: MARS, Computer Arithmetic
The University of Adelaide, School of Computer Science
Lecture 4: MIPS Instruction Set
RISC Concepts, MIPS ISA Logic Design Tutorial 8.
Procedures (Functions)
Lecture 4: MIPS Instruction Set
Henk Corporaal TUEindhoven 2010
Addressing in Jumps jump j Label go to Label op address 2 address
MIPS Instructions.
The University of Adelaide, School of Computer Science
MIPS Functions.
Lecture 7: Examples, MARS, Arithmetic
Lecture 5: Procedure Calls
Chapter 2 Instructions: Language of the Computer part 2
Computer Organization and Design Assembly & Compilation
MIPS Coding.
Lecture 6: Assembly Programs
Computer Architecture
10/6: Lecture Topics C Brainteaser More on Procedure Call
Presentation transcript:

Lecture 8: MIPS Instruction Set Morgan Kaufmann Publishers April 11, 2017 Lecture 8: MIPS Instruction Set Today’s topic Large constants The compilation process Full C example Chapter 1 — Computer Abstractions and Technology

Large Constants Immediate instructions can only specify 16-bit constants The lui instruction is used to store a 16-bit constant into the upper 16 bits of a register… thus, two immediate instructions are used to specify a 32-bit constant The destination PC-address in a conditional branch is specified as a 16-bit constant, relative to the current PC A jump (j) instruction can specify a 26-bit constant; if more bits are required, the jump-register (jr) instruction is used op address 6 bits 26 bits

Starting a Program x.c Compiler x.s Assembler x.a, x.so x.o Linker C Program x.c Compiler Assembly language program x.s Assembler x.a, x.so x.o Object: machine language module Object: library routine (machine language) Linker Executable: machine language program a.out Loader Memory

Role of Assembler Convert pseudo-instructions into actual hardware instructions – pseudo-instrs make it easier to program in assembly – examples: “move”, “blt”, 32-bit immediate operands, etc. Convert assembly instrs into machine instrs – a separate object file (x.o) is created for each C file (x.c) – compute the actual values for instruction labels – maintain info on external references and debugging information

Role of Linker Stitches different object files into a single executable patch internal and external references determine addresses of data and instruction labels organize code and data modules in memory Some libraries (DLLs) are dynamically linked – the executable points to dummy routines – these dummy routines call the dynamic linker-loader so they can update the executable to jump to the correct routine

Full Example – Sort in C void sort (int v[], int n) { int i, j; for (i=0; i<n; i+=1) { for (j=i-1; j>=0 && v[j] > v[j+1]; j-=1) { swap (v,j); } void swap (int v[], int k) { int temp; temp = v[k]; v[k] = v[k+1]; v[k+1] = temp; } Allocate registers to program variables Produce code for the program body Preserve registers across procedure invocations

The swap Procedure Register allocation: $a0 and $a1 for the two arguments, $t0 for the temp variable – no need for saves and restores as we’re not using $s0-$s7 and this is a leaf procedure (won’t need to re-use $a0 and $a1) v in $a0, k in $a1, temp in $t0 swap: sll $t1, $a1, 2 add $t1, $a0, $t1 lw $t0, 0($t1) lw $t2, 4($t1) sw $t2, 0($t1) sw $t0, 4($t1) jr $ra

The sort Procedure Register allocation: arguments v and n use $a0 and $a1, i and j use $s0 and $s1; must save $a0 and $a1 before calling the leaf procedure The outer for loop looks like this: (note the use of pseudo-instrs) move $s0, $zero # initialize the loop loopbody1: bge $s0, $a1, exit1 # will eventually use slt and beq … body of inner loop … addi $s0, $s0, 1 j loopbody1 exit1: for (i=0; i<n; i+=1) { for (j=i-1; j>=0 && v[j] > v[j+1]; j-=1) { swap (v,j); }

The sort Procedure The inner for loop looks like this: addi $s1, $s0, -1 # initialize the loop loopbody2: blt $s1, $zero, exit2 # will eventually use slt and beq sll $t1, $s1, 2 add $t2, $a0, $t1 lw $t3, 0($t2) lw $t4, 4($t2) slt $t0, $t4, $t3 beq $t0,$zero, exit2 … body of inner loop … addi $s1, $s1, -1 j loopbody2 exit2: for (i=0; i<n; i+=1) { for (j=i-1; j>=0 && v[j] > v[j+1]; j-=1) { swap (v,j); }

Saves and Restores Since we repeatedly call “swap” with $a0 and $a1, we begin “sort” by copying its arguments into $s2 and $s3 – must update the rest of the code in “sort” to use $s2 and $s3 instead of $a0 and $a1 Must save $ra at the start of “sort” because it will get over-written when we call “swap” Must also save $s0-$s3 so we don’t overwrite something that belongs to the procedure that called “sort”

Saves and Restores sort: addi $sp, $sp, -20 sw $ra, 16($sp) sw $s3, 12($sp) sw $s2, 8($sp) sw $s1, 4($sp) sw $s0, 0($sp) move $s2, $a0 move $s3, $a1 … move $a0, $s2 # the inner loop body starts here move $a1, $s1 jal swap exit1: lw $s0, 0($sp) addi $sp, $sp, 20 jr $ra 9 lines of C code  35 lines of assembly