HYDROGEOLOGIE ECOULEMENT EN MILIEU HETEROGENE J. Erhel – INRIA / RENNES J-R. de Dreuzy – CAREN / RENNES P. Davy – CAREN / RENNES Chaire UNESCO - Calcul.

Slides:



Advertisements
Similar presentations
1 A parallel software for a saltwater intrusion problem E. Canot IRISA/CNRS J. Erhel IRISA/INRIA Rennes C. de Dieuleveult IRISA/INRIA Rennes.
Advertisements

A parallel scientific software for heterogeneous hydrogeoloy
Numerical simulation of solute transport in heterogeneous porous media A. Beaudoin, J.-R. de Dreuzy, J. Erhel Workshop High Performance Computing at LAMSIN.
HDR J.-R. de Dreuzy Géosciences Rennes-CNRS. PhD. Etienne Bresciani ( ) 2 Risk assessment for High Level Radioactive Waste storage.
Sparse linear solvers applied to parallel simulations of underground flow in porous and fractured media A. Beaudoin 1, J.R. De Dreuzy 2, J. Erhel 1 and.
1 High performance Computing Applied to a Saltwater Intrusion Numerical Model E. Canot IRISA/CNRS J. Erhel IRISA/INRIA Rennes C. de Dieuleveult IRISA/INRIA.
1 Numerical Simulation for Flow in 3D Highly Heterogeneous Fractured Media H. Mustapha J. Erhel J.R. De Dreuzy H. Mustapha INRIA, SIAM Juin 2005.
Estimation of Borehole Flow Velocity from Temperature Profiles Maria Klepikova, Tanguy Le Borgne, Olivier Bour UMR 6118 CNRS University of Rennes 1, Rennes,
Combining hydraulic test data for building a site-scale model MACH 1.3 Modélisation des Aquifères Calcaires Hétérogènes Site Expérimental Hydrogéologique.
Porosity network and transfer properties of geothermal formation : Importance of damage zones around faults and fractures Géraud Yves, Rosener Michel,
Journée Castem, 25/11/09 Simulation de l’injection de carbone dans un site géologique de séquestration du CO 2 Mohamed HAYEK, Emmanuel MOUCHE and Claude.
1 Modélisation et simulation appliquées au suivi de pollution des nappes phréatiques Jocelyne Erhel Équipe Sage, INRIA Rennes Mesures, Modélisation et.
Aquifer Tests in Unconfined Aquifers Lauren Cameron Spring 2014.
A modified Lagrangian-volumes method to simulate nonlinearly and kinetically adsorbing solute transport in heterogeneous media J.-R. de Dreuzy, Ph. Davy,
1/03/09 De 89 à 98. 1/03/09 De 89 à 98 1/03/09 De 89 à 98.
High performance flow simulation in discrete fracture networks and heterogeneous porous media Jocelyne Erhel INRIA Rennes Jean-Raynald de Dreuzy Geosciences.
An efficient parallel particle tracker For advection-diffusion simulations In heterogeneous porous media Euro-Par 2007 IRISA - Rennes August 2007.
Lecture 7 & 8 Refraction of q Equivalent K for fractured media.
REVIEW. What processes are represented in the governing equation that we use to represent solute transport through porous media? Advection, dispersion,
I DENTIFICATION OF main flow structures for highly CHANNELED FLOW IN FRACTURED MEDIA by solving the inverse problem R. Le Goc (1)(2), J.-R. de Dreuzy (1)
Subsurface Hydrology Unsaturated Zone Hydrology Groundwater Hydrology (Hydrogeology )
Hydrologic Characterization of Fractured Rocks for DFN Models.
Watershed Hydrology, a Hawaiian Prospective; Groundwater Ali Fares, PhD Evaluation of Natural Resource Management, NREM 600 UHM-CTAHR-NREM.
Lecture Leaky aquifers. Review problem At time t=0 well A started pumping QA= 2 cfs. Well B started one day later with the same Q. Estimate the time at.
Calculer en avançant – 734 = – 734 =
Upscaling, Homogenization and HMM
Direct and iterative sparse linear solvers applied to groundwater flow simulations Matrix Analysis and Applications October 2007.
1 Parallel Simulations of Underground Flow in Porous and Fractured Media H. Mustapha 1,2, A. Beaudoin 1, J. Erhel 1 and J.R. De Dreuzy IRISA – INRIA.
DYNAS Workshop 6,7,8/12/04 Mixed Hybrid Finite Element and Iterative Methods for Flow in Porous Media E. Mouche, C. Le Potier, P. Maugis, L.V. Benet. Commissariat.
Dubrovnik meeting, 13/10/ Different approaches to simulate flow and transport in a multi scale fractured block October 2008 Bernard-Michel G. Grenier.
We greatly appreciate the support from the for this project Interpreting Mechanical Displacements During Hydromechanical Well Tests in Fractured Rock Hydromechanical.
Groundwater Pollution Remediation NOTE 5 Aquifer Evaluation & Pumping Test Methods.
Groundwater Pollution Remediation NOTE 3 2D Analytical Solutions.

LOGS EQUAL THE The inverse of an exponential function is a logarithmic function. Logarithmic Function x = log a y read: “x equals log base a of y”
( ) A. Mangeney 1,3, O. Roche 2, L. Tsimring 3, F. Bouchut 4, O. Hungr 5, I. Ionescu 6, N. Mangold 7 1 Equipe de Sismologie, Institut de Physique du Globe.
Characterization of the Mammoth Cave aquifer Dr Steve Worthington Worthington Groundwater.
A comparison between a direct and a multigrid sparse linear solvers for highly heterogeneous flux computations A. Beaudoin, J.-R. De Dreuzy and J. Erhel.
Upscaling of two-phase flow processes in CO 2 geological storage Orlando Silva (1), Insa Neuweiler 2), Marco Dentz (3,4), Jesús Carrera (3,4) and Maarten.
Dynamical heterogeneity at the jamming transition of concentrated colloids P. Ballesta 1, A. Duri 1, Luca Cipelletti 1,2 1 LCVN UMR 5587 Université Montpellier.
1 The reactive transport benchmark J. Carrayrou Institut de Mécanique des Fluides et des Solides, Laboratoire d’Hydrologie et de Géochimie de Strasbourg,
Upscaling of Transport Processes in Porous Media with Biofilms in Non-Equilibrium Conditions L. Orgogozo 1, F. Golfier 1, M.A. Buès 1, B. Wood 2, M. Quintard.
Notes Over 7.1 no real 4th roots Finding nth Roots
NATO Advanced Research Workshop Metamaterials for Secure Information and Communication Technologies May 2008, Marrakesh - Morocco 1 May 2008, Marrakesh.
Transient Two-dimensional Modeling in a Porous Environment Unsaturated- saturated Flows H. LEMACHA 1, A. MASLOUHI 1, Z. MGHAZLI 2, M. RAZACK 3 1 Laboratory.
of magnetized discharge plasmas: fluid electrons + particle ions

Rewrite With Fractional Exponents. Rewrite with fractional exponent:
 Adaptive filter based on LMS Algorithm used in different fields  Equalization, Noise Cancellation, Channel Estimation...  Easy implementation in embedded.
。 33 投资环境 3 开阔视野 提升竞争力 。 3 嘉峪关市概况 。 3 。 3 嘉峪关是一座新兴的工业旅游城市,因关得名,因企设市,是长城文化与丝路文化交 汇点,是全国唯一一座以长城关隘命名的城市。嘉峪关关城位于祁连山、黑山之间。 1965 年建市,下辖雄关区、镜铁区、长城区, 全市总面积 2935.
Contact Us.
Do Now: Evaluate each expression.
Project Modeling ORP-Ph
Solving Logarithmic Equations
Solving Logarithmic Equations
How To Add A Xerox Printer To Google Chrome
Frio River Cabins - Frio Vacation Homes - Frio Country Resort

Jean-Raynald de Dreuzy Philippe Davy Micas UMR Géosciences Rennes
FraC: a DFN conforming meshing approach used to obtain reference simulations for steady-state flow, transport and well-test simulations T-D. Ngo, A. Fourno,
Equation Review Given in class 10/4/13.
Transient data during a pressure build-up can be analyzed to try and understand gas condensate well performance, by plotting the change in pseudopressure.
Unit 3 Review (Calculator)
Chapter 4 Boundaries.
Equation Review.
Simplifying Numerical Expressions
Calculate 9 x 81 = x 3 3 x 3 x 3 x 3 3 x 3 x 3 x 3 x 3 x 3 x =
Firebase Vs. MongoDB: Choose the Best Database of 2019
Characterization of the Mammoth Cave aquifer
Changing Education Paradigms
Presentation transcript:

HYDROGEOLOGIE ECOULEMENT EN MILIEU HETEROGENE J. Erhel – INRIA / RENNES J-R. de Dreuzy – CAREN / RENNES P. Davy – CAREN / RENNES Chaire UNESCO - Calcul numérique intensif TUNIS - Mars 2004

Well test interpretation in heterogeneous media J-R De Dreuzy (1), P. Davy (1), J. Erhel (2) (1) UMR 6118 CNRS, Université de Rennes 1, France (2) IRISA/INRIA Rennes  How does heterogeneity influence transient flow? Approach - Evaluation of the classical flow equation on a field experiment (Ploemeur). - Which heterogeneous media follow the same flow equation ? - Numerical simulation of transient flow in heterogeneous media What is the relevant diffusion equation (Theis, Barker, …) ?

A field example of heterogeneous medium Ploemeur (Brittany): Aquifer in a highly fractured zone on the contact between granite and micaschiste Granite Micaschiste

Well tests in Ploemeur Barker Theis

Generalized flow models ModelDimension exponent Anomalous diffusion exp Radius of diffusion Drawdown at the well Theis Barker (1988) Acuna and Yortsos (1995) D=2 1<D<3 d w =2 d w >2 R 2~t R 2 ~t 2/dw h o ~ t -1 h o ~ t -D/2 h o ~ t -D/dw  Generalized diffusivity equation  Generalized drawdown solution Drawdown at the well Radius of diffusion

Relevant models and exponents at Ploemeur normal fault zone contact zone Anomalous diffusion exponent d w = 2.8 Dimension exponent D=2.2 Dimension exponent D=1.6 It appears possible to define a mean equivalent flow model at least for one of the major fault zone The relevant model implies: - a fractional flow dimension - an anomalous diffusion

Influence of the heterogeneity on the flow equation Validity of the generalized flow equation? Sierpinski Gasket D=D 0 =1.58 d w =2.3 D 0 =2 1<D 2 <2 D, d w ? D 0 =2 D, d w ? Heterogeneous logK fields with Fractal fields Multifractal fields 1<D 0 <2 D, d w ?

Fractal correlation pattern : Generation D 2 =1.8D 2 =1.2D 2 =1.5 Dimension D 2 nested generation probability field C(r)~r D2 Correlation function

Transient flow model Darcy Law Mass conservation law Porous media  h/  t + .u = f u = -k  h Boundary conditions

Numerical simulation  space and time discretisations : stiff system of ODEs  scale effects : large grid size  stochastic modelling : many simulations Need for high performance schemes and software

Finite Volume Method  mass is conserved locally  it can be simply extended to unstructured 2D and 3D grids  the linear system to solve is positive definite  the scheme is monotone  number of degrees of freedom = number of nodes  velocity is not accurate  full tensors of permeability are not easily handled  large sparse ill-conditioned linear system at each time step  the ODE system is stiff BUT

Mixed Finite Element Method  mass is conserved locally  it can be simply extended to unstructured 2D and 3D grids  the linear system to solve is positive definite  pressure and velocity are approximated simultaneously  full tensors of permeability are easily handled  the scheme is non monotone  number of degrees of freedom = number of faces + number of nodes  large sparse ill-conditioned linear system at each time step  the system is stiff BUT

Mass conservation law : S dP/dt + D P - R T = F Darcy law : - R T P + M T = V M large sparse ill-conditioned matrix R large sparse rectangular matrix S and D diagonal matrices Mixed Hybrid Finite Element Method

Simplified scheme using mass lumping Elimination of T : S dP/dt + (D - R M -1 R T ) P = F + R M -1 V Exact solution : P = exp(-t (D - R M -1 R T ) ) P 0 + P 1 Sufficient conditions for positivity : (R M -1 R T) KK ’  0, M EE ’  0 and R KE  0 Mass lumping : diagonal elementary matrices  the scheme is monotone  the matrix M is diagonal, easy to invert  the system of ODE is of size N

Additive Runge-Kutta scheme S dP/dt + (D - R M -1 R T ) P = F + R M -1 V D  0 and R M -1 R T  0 Stiff part in D : implicit for D and explicit for R M -1 R T No sparse linear system to solve High performance compact scheme Example : ARK of order 1 (Euler) (S + dt D) P n+1 - R M -1 R T P n = dt (F n+1 + R M -1 V n+1 )

Numerical experiments Currently, finite volume scheme for transient computations, use of LSODES package BDF scheme and direct sparse linear solver high memory requirements for steady flow computations, use of UMFPACK solver

Steady flow in porous media : numerical results Lognormal distribution well test simulation

Steady flow in porous media : numerical results Fractal with D = 1.5 well test simulation

Equivalent permeability Steady flow in porous media : physical interpretation

Validation of the transient flow simulator Percolation network Anomalous medium K(r)~r x

Transient flow simulation and determination of the exponents Pattern generation D=1.5 Fit on h 0 (t) Flow simulation Fit on R 2 (t)

Distribution of exponents for multifractals D 0 =2 and D 2 =1.5 R 2 (t)~t^(2/d w ) h 0 (t)~t^(-D/d w ) Mean exponents : dw=2, D=D 0 =2

Exponent mean and stds for multifractals Conclusions =D 0 (support dimension) =2 (normal transport) Large variability around the mean D=[1.5,2.5] and dw=[1.5,3]

Why is the mean transport normal in multi-fractal media? Porous medium Flow  =2-D 2 d w = 2-D 2 +D ? d w =2 With D?=D 2 Einstein Relation in 2D : d w =D ? + 

Comparison between fractal and multi-fractal media MultifractalFractal Support dimensionD 0 =2D 0 =[1,2] Correlation dimensionD 2 =[1,2]D 2 =D 0 Permeability exponent  =2-D 2 ? Diffusion exponentd w =2 ([1.5,3]) ? Hydraulic DimensionD=D 0 ([1.5,2.5]) ?

Characteristic exponents for fractal media

Comparison between fractal and multi-fractal media MultifractalFractal Support dimensionD 0 =2D 0 =[1,2] Correlation dimensionD 2 =[1,2]D 2 =D 0 Permeability exponent  =2-D 2  =d w -D 0 Diffusion exponentd w =2 ([1.5,3]) d w =2.3  0.2 Hydraulic DimensionD=D 0 ([1.5,2.5]) D=D 0  0.1

Heterogeneous logK fields 1. Large exponent variability 2. d w =2 normal transport 3. =[2,2.3]

Conclusions  The relation of Einstein is verified  The average transport is normal ~2  The average hydraulic dimension is the fractal dimension and more precisely the support dimension D 0.  Individual media have a large variability d w =[1.5,3] D=[1.5,2.5]  Average anomalous diffusion is to be searched in medium having a highly heterogeneous structure like percolation network at threshold (d w =2.86)