Tailoring Nanostructured Catalysts in a Hydrogen Economy Prof. Paolo FORNASIERO Department of Chemistry University of Trieste, Italy pfornasiero@units.it Le filiere dell’energia- Trieste, 26.11.2010
cost of available feedstocks size of production H2 PRODUCTION TECHNOLOGIES Eolic Electrolysis Hydro- electric Reforming Solar Geothermal cost of available feedstocks size of production Fermentation + Reforming Biomass Gasification Pyrolysis + Reforming Gas Oil Carbon
Proton Exchange Membrane Fuel Cells (PEM-FC) H2 PRODUCTION & PURIFICATION O2 H2 H2O Proton Exchange Membrane Fuel Cells (PEM-FC) Active and stable catalysts are required for large scale applications Most efficient catalyst (electrodes) for H2 utilization in Fuel Cells
EMBEDDING APPROACH encapsulation of preformed metal nanoparticles into MOx through different methodologies
Rh@Al2O3 FOR METHANE PARTIAL OXIDATION
1% Rh impregnated vs 1% Rh embedded @Al2O3 Rh@Al2O3 for MPO 1% Rh impregnated vs 1% Rh embedded @Al2O3 T = 750°C Protected Impregnated T. Montini, A. M. Condó, N. Hickey, F. Lovey, L. De Rogatis, P. Fornasiero and M. Graziani, Applied Catalysis B: Environmental 73 (2007) 84-97
Ru@LSZ FOR NH3 DECOMPOSITION
Ru@LSZ for NH3 DECOMPOSITION Reaction with pure NH3 GHSV T = 500°C 4000 mL g-1 h-1 T = 700°C 30000 mL g-1 h-1 B. Lorenzut, T. Montini, C. C. Pavel, M. Comotti, F. Vizza, C. Bianchini and P. Fornasiero, ChemCatChem 2 (2010), 1096-1106 .
Cu@TiO2 for PHOTOCATALYTIC H2 PRODUCTION
Organic molecule as sacrificial agents Cu@TiO2 for PHOTOCATALYTIC H2 PRODUCTION hn > 3.0 eV Water splitting: Very low efficiency Organic molecule as sacrificial agents Renewable compounds
Cu@TiO2 for PHOTOCATALYTIC H2 PRODUCTION Experimental condition: Medium pressure Hg lamp 125W 0.500 g catalyst 240 mL of solution Argon flow 15 mL/min Ar in Ar in Ar out Cu@TiO2 Cu/TiO2 vs Ethanol/water 1:1 Glycerol 1M Evolution rate (mmol/h) Evolution rate (mmol/h) H2 CO2 Time (h) Time (h) V. Gombac, L. Sordelli, T. Montini, J. J. Delgado, A. Adamski, G. Adami, M. Cargnello, S. Bernal and P. Fornasiero, Journal of Physical Chemistry A 114 (2010), 3916-3925
…CuO 1D nanoarchitectures plane-view cross-section FE-SEM O2 + H2O atmosphere granular Cu2O films… plane-view cross-section 200 nm 550°C 1 μm dry O2 atmosphere …CuO 1D nanoarchitectures
Photocatalytic splitting of H2O/CH3OH (1:1) solutions H2 production Fornasiero P. et al., ChemSusChem 2009, 2, 230 Effect of catalyst recycling Radiation switched off for 12 h 5000 10000 15000 20000 25000 30000 5 10 15 20 25 time / h high time stability of the catalyst H2 production/L h-1 m-2 g-1 UV-Vis (125 W) H2 production/L h-1 m-2 50 40 30 20 10 2 4 6 Cu2O CuO time/h Activity normalized for the catalyst amount CuO Vis (125 W) H2 production/L h-1 m-2 1 2 3 4 5 6 time/h Cu2O CuO Significantly better performances than commercial CuxO (<580 L h-1 m-2 g-1) 13
DEVELOPMENT OF ADVANCED ELECTRODES FOR SOFCs
CORE-SHELL STRUCTURE DESIGN COOH-Ce bond stable Ce-OR bond not stable Pd-S bond stable
Methanol Steam Reforming Pd@CeO2 DISPERSIBLE STRUCTURES AS BUILDING BLOCKS Al2O3 Pd(1%)@CeO2(9%)/Al2O3 CO oxidation WGSR Methanol Steam Reforming JACS 2010, 132, 1402-1409
ZrO2-based solid electrolite ADVANCED ELECTRODES for SOFCs Cathode: Perovskite ABO3 La1-xSrxNi0.6Fe0.4O3-d ZrO2-based solid electrolite 8-YSZ Anode: LSCM + CeO2 + Pd LSCM =La0.8Sr0.2Cr0.5Mn0.5O3 Catalytic component CeO2-Pd
ADVANCED ELECTRODES for SOFCs: ANODE 50 μm 100 μm
Maximum power density (W/cm2) ADVANCED ELECTRODES for SOFCs: ANODE - 15 % Pd@CeO2 - 15% Maximum power density (W/cm2) - 26% - 26 % Pd/CeO2-1 - 42 % Pd/CeO2-2 - 43% Time (h)