Estimate of physical parameters of molecular clouds Observables: T MB (or F ν ), ν, Ω S Unknowns: V, T K, N X, M H 2, n H 2 –V velocity field –T K kinetic.

Slides:



Advertisements
Similar presentations
SUMMARY 1.Statistical equilibrium and radiative transfer in molecular (H 2 ) cloud – Derivation of physical parameters of molecular clouds 2.High-mass.
Advertisements

Searching for disks around high-mass (proto)stars with ALMA R. Cesaroni, H. Zinnecker, M.T. Beltrán, S. Etoka, D. Galli, C. Hummel, N. Kumar, L. Moscadelli,
Disk Structure and Evolution (the so-called model of disk viscosity) Ge/Ay 133.
Francesco Trotta YERAC, Manchester Using mm observations to constrain variations of dust properties in circumstellar disks Advised by: Leonardo.
Cold dust in the Galactic halo: first detection of dust emission in a high-velocity cloud : Francois Boulanger et Marc-Antoine Miville-Deschênes Miville.
Shunya Takekawa T. Oka, K. Tanaka, K. Miura, H. Suzuta Keio University
High Resolution Observations in B1-IRS: ammonia, CCS and water masers Claire Chandler, NRAO José F. Gómez, LAEFF-INTA Thomas B. Kuiper, JPL José M. Torrelles,
H 2 Formation in the Perseus Molecular Cloud: Observations Meet Theory.
HCN, HNC, CN et al. in dense depleted cores Malcolm Walmsley (Arcetri and Dublin) With thanks to Marco Padovani and Pierre Hily-Blant.
1)Disks and high-mass star formation: existence and implications 2)The case of G : characteristics 3)Velocity field in G31.41: rotation or expansion?
A MOPRA CS(1-0) demonstration survey of the Galactic plane G. Fuller, N. Peretto, L. Quinn (University of Manchester UK), J. Green (ATNF ) All dust continuum.
M. Emprechtinger, D. Lis, P. Schilke, R. Rolffs, R. Monje, The Chess Team.
Low-Mass Star Formation in a Small Group, L1251B Jeong-Eun Lee UCLA.
DUSTY04 – Paris ALMA and ISM / Star Formation Stéphane GUILLOTEAU Observatoire de Bordeaux.
Outflow, infall, and rotation in high-mass star forming regions
SMA Observations of the Binary Protostar System in L723 Josep Miquel Girart 1, Ramp Rao 2, Robert Estalella 3 & Josep Mª Masqué 3 1 Institut de Ciències.
Radio Astronomy And The Spiral Structure Of The Milky Way Jess Broderick Supervisor: Dr George Warr.
A Molecular Inventory of the L1489 IRS Protoplanetary Disk Michiel R. Hogerheijde Christian Brinch Leiden Observatory Jes K. Joergensen CfA.
Modelling the Broad Line Region Andrea Ruff Rachel Webster University of Melbourne.
Cambridge, June 13-16, 2005 A Study of Massive Proto- and Pre-stellar Candidates with the SEST Antenna Maite Beltrán Universitat de Barcelona J. Brand.
Variable SiO Maser Emission from V838 Mon Mark Claussen May 16, 2006 Nature of V838 Mon and its Light Echo.
Chemical and Physical Structures of Massive Star Forming Regions Hideko Nomura, Tom Millar (UMIST) ABSTRUCT We have made self-consistent models of the.
Star and Planet Formation Sommer term 2007 Henrik Beuther & Sebastian Wolf 16.4 Introduction (H.B. & S.W.) 23.4 Physical processes, heating and cooling.
Star Formation Research Now & With ALMA Debra Shepherd National Radio Astronomy Observatory ALMA Specifications: Today’s (sub)millimeter interferometers.
1 High-z galaxy masses from spectroastrometry Alessio Gnerucci Department of Physics and Astronomy University of Florence 13/12/2009- Obergurgl Collaborators:
TURBULENCE AND HEATING OF MOLECULAR CLOUDS IN THE GALACTIC CENTER: Natalie Butterfield (UIowa) Cornelia Lang (UIowa) Betsy Mills (NRAO) Dominic Ludovici.
MALT 90 Millimetre Astronomy Legacy Team 90 GHz survey
A hot topic: the 21cm line I Benedetta Ciardi MPA.
Molecular absorption in Cen A on VLBI scales Huib Jan van Langevelde, JIVE Ylva Pihlström, NRAO Tony Beasley, CARMA.
The overall systematic trends in the kinematics of massive star forming regions Observations of HC 3 N* in hot cores Víctor M. Rivilla 41st Young European.
What is Millimetre-Wave Astronomy and why is it different? Michael Burton University of New South Wales.
HH s at NIR ObservationsDiagnosis.  NKL  Trapezium  OMC1-S (L = 10 5 L o t
Hydroxyl Emission from Shock Waves in Interstellar Clouds Catherine Braiding.
Massive Star Formation Observational Cassandra Fallscheer PhD Advisor: Henrik Beuther Monday 28. March 2007.
Plasma diagnostics using spectroscopic techniques
Mellinger Lesson 7 LVG model & X CO Toshihiro Handa Dept. of Phys. & Astron., Kagoshima University Kagoshima Univ./ Ehime Univ. Galactic radio astronomy.
June 21, th International Symposium on Molecular Spectroscopy Nicholas R. Zeigler Lindsay N. Zack Neville J. Woolf Lucy M. Ziurys Department of.
Department of Physics and Astronomy Rice University From the Omega facility to the Hubble Space Telescope: Experiments and Observations of Supersonic Fluid.
Seeing Stars with Radio Eyes Christopher G. De Pree RARE CATS Green Bank, WV June 2002.
Infall rates from observations Joseph Mottram 1. Why is infall relevant? Infall must happen for star formation to proceed The rate of infall on envelope.
ASTR112 The Galaxy Lecture 7 Prof. John Hearnshaw 11. The galactic nucleus and central bulge 11.1 Infrared observations (cont.) 11.2 Radio observations.
Near-Infrared Spectroscopic Study of AA Tau Logan R. Brown Erika L. Gibb Nathan X. Roth University of Missouri – St. Louis.
CHARA Collaboration Year-Five Science Review Observations of Be Star Circumstellar disks with the CHARA Array Status of the Be stars Survey Project CHARA.
The planet-forming zones of disks around solar- mass stars: a CRIRES evolutionary study VLT Large Program 24 nights.
 1987, Whistler: first time I met Malcolm  , post-doc at MPIfR: study of molecular gas in UC HII regions (NH 3, C 34 S, CH 3 CN) with 100m and.
The Meudon PDR code on complex ISM structures F. Levrier P. Hennebelle, E. Falgarone, M. Gerin (LERMA - ENS) F. Le Petit (LUTH - Observatoire de Paris)
Maite Beltrán Osservatorio Astrofisico di Arcetri The intringuing hot molecular core G
1)Observations: where do (massive) stars form? 2)Theory: how do (massive) stars form? 3)Search for disks in high-mass (proto)stars 4)Results: disks in.
Multiple YSOs in the low-mass star-forming region IRAS CONTENT Introduction Previous work on IRAS Observations Results Discussion.
Simulated [CII] 158 µm observations for SPICA / SAFARI F. Levrier P. Hennebelle, E. Falgarone, M. Gerin (LERMA - ENS) F. Le Petit (LUTH - Observatoire.
Early O-Type Stars in the W51-IRS2 Cluster A template to study the most massive (proto)stars Luis Zapata Max Planck Institut für Radioastronomie, GERMANY.
1)OB star formation: pros and contras of maser studies 2)Are maser (VLBI) studies “obsolete”? 3)Association of masers with jets/disks: some examples 4)Conclusion:
Molecules around AE Aurigae Patrick Boissé, IAP Collaborators oAndersson BG. oGalazutdinov G. oFederman S. oGerin M. oGry C. oHilly-Blant P. oKrelowski.
C. Catala, Observatoire de Paris, P. Feldman, JHU A. Lecavelier des Etangs, IAP C. Martin, LAM A. Roberge, Carnegie Institution of Washington T. Simon.
Searching for disks around high-mass (proto)stars with ALMA R. Cesaroni, H. Zinnecker, M.T. Beltrán, S. Etoka, D. Galli, C. Hummel, N. Kumar, L. Moscadelli,
First high-resolution 3D inversion of the dust emission in Galactic ISM with Spitzer/Herschel. The case region [l,b]=[30,0] A. Traficante, R. Paladini,
The Evolution of Massive Dense Cores Gary Fuller Holly Thomas Nicolas Peretto University of Manchester.
The Ionization Toward The High-Mass Star-Forming Region NGC 6334 I Jorge L. Morales Ortiz 1,2 (Ph.D. Student) C. Ceccarelli 2, D. Lis 3, L. Olmi 1,4, R.
LDN 723: Can molecular emission be used as clock calibrators? Josep Miquel Girart Collaborators: J.M.Masqué,R.Estalella (UB) R.Rao (SMA)
MOLECULAR HYDROGEN IN THE CIRCUMSTELLAR ENVIRONMENT OF HERBIG Ae/Be STARS Claire MARTIN 1 M. Deleuil 1, J-C. Bouret 1, J. Le Bourlot 2, T. Simon 3, C.
The Structures on Sub-Jeans Scales, Fragmentation, and the Chemical Properties in Two Extremely Dense Orion Cores Zhiyuan Ren, Di Li (NAOC) and Nicolas.
1)The recipe of (OB) star formation: infall, outflow, rotation  the role of accretion disks 2)OB star formation: observational problems 3)The search for.
The IR-Radio Correlation in High-Mass Young Stellar Objects
Osservatorio Astrofisico di Arcetri
Thin, Cold Strands of Hydrogen in the Riegel-Crutcher Cloud
Molecules: Probes of the Interstellar Medium
Molecular Gas Distribution of our Galaxy: NANTEN Galactic Plane Survey
Infall in High-mass Star-forming Clumps
MASER Microwave Amplification by Stimulated Emission of Radiation
Presentation transcript:

Estimate of physical parameters of molecular clouds Observables: T MB (or F ν ), ν, Ω S Unknowns: V, T K, N X, M H 2, n H 2 –V velocity field –T K kinetic temperature –N X column density of molecule X –M H 2 gas mass –n H 2 gas volume density

Velocity field From line profile: Doppler effect: V = c(ν 0 - ν)/ν 0 along line of sight in most cases line FWHM thermal < FWHM observed  thermal broadening often negligible  line profile due to turbulence & velocity field Any molecule can be used!

channel maps integral under line Star Forming Region

rotating disk line of sight to the observer

GG Tau disk 13 CO(2-1) channel maps 1.4 mm continuum Guilloteau et al. (1999)

infalling envelope line of sight to the observer

red-shifted absorption bulk emission blue-shifted emission VLA channel maps 100-m spectra Hofner et al. (1999)

Problems: only V along line of sight position of molecule with V is unknown along line of sight line broadening also due to micro-turbulence numerical modelling needed for interpretation

Kinetic temperature T K and column density N X LTE n H 2 >> n cr  T K = T ex τ >> 1: T K ≈ (Ω B /Ω S ) T MB but no N X ! e.g. 12 CO τ << 1: N u  (Ω B /Ω S ) T MB e.g. 13 CO, C 18 O, C 17 O T K = (hν/k)/ln(N l g u /N u g l ) N X = (N u /g u ) P.F.(T K ) exp(E u /kT K )

τ ≈ 1: τ = -ln[1-T MB (sat) /T MB (main) ] e.g. NH 3 T K = (hν/k)/ln(g 2 τ 1 /g 1 τ 2 )  N u  τT K  N X = (N u /g u ) P.F.(T K ) exp(E u /kT K )

If N i is known for >2 lines  T K and N X from rotation diagrams (Boltzmann plots): e.g. CH 3 C 2 H P.F.= Σ g i exp(-E i /kT K ) partition function

CH 3 C 2 H Fontani et al. (2002)

CH 3 C 2 H Fontani et al. (2002)

Non-LTE numerical codes (LVG) to model T MB by varying T K, N X, n H 2 e.g. CH 3 CN Olmi et al. (1993)

Problems: calibration error at least 10-20% on T MB T MB is mean value over Ω B and line of sight τ >> 1  only outer regions seen different τ  different parts of cloud seen chemical inhomogeneities  different molecules from different regions for LVG collisional rates with H 2 needed

Possible solutions: high angular resolution  small Ω B high spectral resolution  parameters of gas moving at different V’s along line profile  line interferometry needed!

Mass M H 2 and density n H 2 Column density: M H 2  (d 2 /X) ∫ N X dΩ –uncertainty on X by factor –error scales like distance 2 Virial theorem: M H 2  d Θ S (ΔV) 2 –cloud equilibrium doubtful –cloud geometry unknown –error scales like distance

(Sub)mm continuum: M H 2  d 2 F ν /T K –T K changes across cloud –error scales like distance 2 –dust emissivity uncertain depending on environment Non-LTE: n H 2 from numerical (LVG) fit to T MB of lines of molecule far from LTE, e.g. C 34 S –results model dependent –dependent on other parameters (T K, X, IR field, etc.) –calibration uncertainty > 10-20% on T MB –works only for n H 2 ≈ n cr

observed T B observed T B ratio T K = K n H 2 ≈ cm -3 satisfy observed values τ > 1  thermalization

best fits to T B of four C 34 S lines (Olmi & Cesaroni 1999)

H 2 densities from best fits

Bibliography Walmsley 1988, in Galactic and Extragalactic Star Formation, proc. of NATO Advanced Study Institute, Vol. 232, p.181 Wilson & Walmsley 1989, A&AR 1, 141 Genzel 1991, in The Physics of Star Formation and Early Stellar Evolution, p. 155 Churchwell et al. 1992, A&A 253, 541 Stahler & Palla 2004, The Formation of Stars