The Global Star Formation Law in Dense Molecular Gas Yu Gao Purple Mountain Observatory Chinese Academy of Sciences Sept. 7, (IAUS 284)

Slides:



Advertisements
Similar presentations
Low-J CO Line Emission at High Redshift with ALMA Band 2 Leslie Hunt INAF-Osservatorio Astrofisico di Arcetri Firenze, Italy.
Advertisements

Dense Molecular Gas in Galaxies Near and Far Yu GAO Purple Mountain Observatory, Nanjing Chinese Academy of Sciences.
H 2 Formation in the Perseus Molecular Cloud: Observations Meet Theory.
Ming Zhu (JAC/NRC) P. P. Papadopoulos (Argelander Institute for Astronomy, Germany) Yu Gao (Purple Mountain Observatory, China) Ernie R. Seaquist (U. of.
Luminous Infrared Galaxies with the Submillimeter Array: Probing the Extremes of Star Formation Chris Wilson (McMaster), Glen Petitpas, Alison Peck, Melanie.
The Two Tightest Correlations: FIR-RC and FIR-HCN Yu GAO Purple Mountain Observatory, Nanjing Chinese Academy of Sciences.
From GMC-SNR interaction to gas-rich galaxy-galaxy merging Yu GAO Purple Mountain Observatory, Nanjing, China Chinese Academy of Sciences.
Toyoaki Suzuki (ISAS/JAXA) Hidehiro Kaneda (Nagoya Univ.) Takashi Onaka (Tokyo Univ.)
CO imaging surveys of nearby galaxies Nario Kuno Nobeyama Radio Observatory.
F. Walter, M. Aravena, F. Bertoldi, C. Carilli, P. Cox, E. da Cunha, E. Daddi, D. Downes, M. Dickinson, R. Ellis, R. Maiolino, K. Menten, R. Neri, D. Riechers,
Buried AGNs in nearby ULIRGs Masa Imanishi (National Astronomical Observatory of Japan)
A CO(3-2) Survey of Warm Molecular Gas in Nearby Galaxies Rui-Qing Mao ( 毛瑞青 ) (Purple Mountain Observatory, Nanjing) C. Henkel (MPIfR) R. Mauersberger.
Connecting Dense Gas Tracers of Star Formation in our Galaxy to High-z Star Formation Jingwen Wu & Neal J. Evans II (Univ. of Texas at Austin) ; Yu Gao.
The Prospect of Observing the KS Relation at High-z Desika Narayanan Harvard-Smithsonian CfA Chris HaywardT.J. CoxLars Hernquist Harvard Carnegie.
Molecular Gas, Dense Molecular Gas and the Star Formation Rate in Galaxies (near and far) P. Solomon Molecular Gas Mass as traced by CO emission and the.
Extragalactic Star Formation into the ALMA Era (Beyond CO)* Yu GAO 高 煜 Purple Mountain Observatory, Nanjing Chinese Academy of Sciences *Dedicated to the.
The Kennicutt-Schmidt Star Formation Relation at z~2 Desika Narayanan Harvard-Smithsonian CfA Chris HaywardT.J. CoxLars Hernquist Harvard Carnegie.
Turbulence, Feedback, and Slow Star Formation Mark Krumholz Princeton University Hubble Fellows Symposium, April 21, 2006 Collaborators: Rob Crockett (Princeton),
The Relation between Atomic and Molecular Gas in the Outer Disks of Galaxies Jonathan Braine Observatoire de Bordeaux with... N. Brouillet, E. Gardan,
Excitation Mechanisms: The Irradiated and Stirred ISM Marco Spaans (Groningen) Rowin Meijerink (Leiden), Frank Israel (Leiden), Edo Loenen (Leiden), Willem.
Dust/Gas Correlation in the Large Magellanic Cloud: New Insights from the HERITAGE and MAGMA surveys Julia Roman-Duval July 14, 2010 HotScI.
 High luminosity from the galactic central region L bol ~ erg/s  High X-ray luminosity  Supermassive black hole at the center of the galaxy.
Evolution of Extreme Starbursts & The Star Formation Law Yu Gao Purple Mountain Observatory, CAS.
Galaxy Groups in HICAT Jamie Stevens. Outline Introduction Group-finding in HICAT HIPASS group properties Star formation properties Summary.
Galactic and Extragalactic star formation M.Walmsley (Arcetri Observatory)
ULTRALUMINOUS INFRARED GALAXIES: 2D KINEMATICS AND STAR FORMATION L. COLINA, IEM/CSIC S. ARRIBAS, STSCI & CSIC D. CLEMENTS, IMPERIAL COLLEGE A. MONREAL,
STAR FORMATION STUDIES with the CORNELL-CALTECH ATACAMA TELESCOPE Star Formation/ISM Working Group Paul F. Goldsmith (Cornell) & Neal. J. Evans II (Univ.
Molecular Gas and Star Formation in Nearby Galaxies Tony Wong Bolton Fellow Australia Telescope National Facility.
A multi-wavelength view of galaxy evolution with AKARI Stephen Serjeant 29 th February 2012.
Lighting the dark molecular gas using the MIR H 2 rotational lines Aditya Togi Advisor: JD Smith University of Toledo 19 th June
Der Paul van der Werf Leiden Observatory H 2 emission as a diagnostic of physical processes in star forming galaxies Paris October 1, 1999.
130 cMpc ~ 1 o z~ = 7.3 Lidz et al ‘Inverse’ views of evolution of large scale structure during reionization Neutral intergalactic medium via HI.
Star Formation: Near and Far Neal J. Evans II with Rob Kennicutt.
Interstellar Medium and Star Formation in the Andromeda Galaxy Andreas Schruba California Institute of Technology Adam Leroy, Karin Sandstrom, Fabian Walter,
ALMA DOES GALAXIES! A User’s Perspective on Early Science Jean Turner UCLA.
Chris Wilson McMaster University - C. Wilson, F. Israel, S. Serjeant (coordinators) - B. Warren, E. Sinukoff, D. Attewell; C. Baker, J. Newton, T. Parkin,
Turbulence, Feedback, and Slow Star Formation Mark Krumholz Princeton University / UC Santa Cruz Gas Accretion and Star Formation in Galaxies MPA/ESO/MPE/USM.
Atomic and Molecular Gas in Galaxies Mark Krumholz UC Santa Cruz The EVLA: Galaxies Through Cosmic Time December 18, 2008 Collaborators: Sara Ellison (U.
Gas Dynamics, AGN, Star Formation and ISM in Nearby Galaxies Eva Schinnerer (MPIA) S. Haan, F. Combes, S. Garcia-Burillo, C.G. Mundell, T. Böker, D.S.
The Irradiated and Stirred ISM of Active Galaxies Marco Spaans, Rowin Meijerink (Leiden), Frank Israel (Leiden), Edo Loenen (Leiden), Willem Baan (ASTRON),
1 Lessons from cosmic history Star formation laws and their role in galaxy evolution R. Feldmann UC Berkeley see Feldmann 2013, arXiv:
Molecular Survival in Planetary Nebulae: Seeding the Chemistry of Diffuse Clouds? Jessica L. Dodd Lindsay Zack Nick Woolf Emily Tenenbaum Lucy M. Ziurys.
A study of a ULIRG-to-QSO transition object: possibly another gas-rich/gas-poor merger and a serendipitous line detection Manuel Aravena, Jeff Wagg, Padelis.
R. Meijerink, P. van der Werf, F. Israel and the HEXGAL team HERSCHEL OBSERVATIONS OF Edo Loenen, Leiden Observatory EXTRA GALACTIC STAR FORMATIONMESSIER.
The Global Star Formation Laws in Galaxies: Recent Updates Yu Gao Purple Mountain Observatory Chinese Academy of Sciences May 15, th sino-french.
SMA [CII] 158um 334GHz, 20hrs BRI z=4.7 Quasar-SMG pair Both HyLIRG Both detected in CO Iono ea 2007 Omont ea ”4” HST 814 Hu ea 96.
D. B. Sanders Institute for Astronomy, University of Hawaii Gas-Rich Mergers and the origin of nuclear starbursts and AGN The Dusty and Molecular Universe:
Molecular Gas (Excitation) at High Redshift Fabian Walter Max Planck Institute for Astronomy Heidelberg Fabian Walter Max Planck Institute for Astronomy.
The Local Universe A CCAT perspective Christine Wilson McMaster University, Canada 7 January 20131AAS 221 – Long Beach, CA.
Molecular Gas in Low-Redshift Radio Galaxies & Quasi-Stellar Objects Detected by IRAS Aaron Evans (Stony Brook) J. Mazzarella (IPAC) J. Surace (SSC) D.
Warm Molecular Gas in Galaxies Rui-Qing Mao ( 毛瑞青 ) (Purple Mountain Observatory, Nanjing) C. Henkel (MPIfR) R. Mauersberger (IRAM) Dinh-Van-Trung (ASIAA)
Extragalactic Absorption – The Promise of the EVLA Karl M. Menten Max-Planck-Institute for Radio Astronomy Christian Henkel (MPIfR), with Christian Henkel.
ALMA: Imaging the cold Universe Great observatories May 2006 C. Carilli (NRAO) National Research Council Canada.
Mapping CO in the Outer Parts of UV Disks CO Detection Beyond the Optical Radius Miroslava Dessauges Observatoire de Genève, Switzerland Françoise Combes.
Modes of Star Formation along the Hubble Sequence … and beyond Richard de Grijs University of Sheffield, UK Terschelling, 7 July 2005.
Big Bang f(HI) ~ 0 f(HI) ~ 1 f(HI) ~ History of Baryons (mostly hydrogen) Redshift Recombination Reionization z = 1000 (0.4Myr) z = 0 (13.6Gyr) z.
Massive Star Formation under Different Z & Galactic Environment Rosie Chen (University of Virginia) Remy Indebetouw, You-Hua Chu, Robert Gruendl, Gerard.
HST HII regions & optical light Eva Schinnerer Max Planck Institute for Astronomy molecular gas (PAWS) 1 kpc Star Formation and ISM in Nearby Galaxies:
What is EVLA? Giant steps to the SKA-high ParameterVLAEVLAFactor Point Source Sensitivity (1- , 12 hr.)10  Jy1  Jy 10 Maximum BW in each polarization0.1.
XGAL 2016, Charlottesville, April 5 th 2016 Sergio Martín Ruiz Joint ALMA Office The unbearable opaqueness of obscured nuclei.
Purple Mountain Obs. CAS CHINA 2005 LiJiang International Starburst Workshop The Dense Molecular Connection Between IR and RC Emission In Galaxies Fan.
High Redshift Galaxies/Galaxy Surveys ALMA Community Day April 18, 2011 Neal A. Miller University of Maryland.
The Secret Lives of Molecular Clouds Mark Krumholz Princeton University Hubble Fellows Symposium March , 2008 Collaborators: Tom Gardiner (Cray.
The CO SED and molecular gas properties in Early-Type Galaxies (ETGs)
What Determines Star Formation Rates?
What is EVLA? Build on existing infrastructure, replace all electronics (correlator, Rx, IF, M/C) => multiply ten-fold the VLA’s observational capabilities.
Dense gas history of the Universe  Tracing the fuel for galaxy formation over cosmic time SF Law SFR Millennium Simulations, Obreschkow & Rawlings 2009;
KENNICUTT-SCHMIDT RELATION VARIETY AND STAR-FORMING CLOUD FRACTION
Millimeter Megamasers and AGN Feedback
Observing Molecules in the EoR
Presentation transcript:

The Global Star Formation Law in Dense Molecular Gas Yu Gao Purple Mountain Observatory Chinese Academy of Sciences Sept. 7, (IAUS 284)

Outline of this talk What are the star formation (SF) recipes? SFR-gas (HI, CO) scaling laws: Schmidt law, SF laws in other forms Why do we need a SFR-DenseGas law A linear FIR(SFR)-HCN (dense gas tracer)relation for all star-forming systems: SF law in DenseGas Major Issues and debates Conclusion+Solutions?!

Star formation laws Schmidt (1959): SFR~density(HI)^n, n=1-3, mostly 2-3 in ISM of our Galaxy. Kennicutt (1989): Disk-average [SFR~ density(HI+H2)^n] n is not well constrained. ~1-3, wide spread. Kennicutt (1998): n=1.4 ? Total gas (HI + H2) vs. Dense gas Better SF law in dense gas? (Hubble law, Georges Lemaître & H 0 analogy)

Kennicutt 1998 n=1.4

Normal disk spirals IR circumnuclear starbursts

SFR vs. M(H2): No Unique Slope:1, 1.4, 1.7? HI-dominated LSB galaxies HI ~ H2 H2-dominatedLIRGs/ULIRGs Gao & Solomon 2004b ApJExtragalactic SF=CO until 90’s

Bigiel’s SF thresholds may simply reflect the change of the dominant cold gas phase in galaxies from HI ->H2 & from H2->denseH2 Schruba+2011 ~linear in H2!

DenseCores in nuclear regions of LSB spirals? Deep CO obs. (~20 hrs on 12m) in UGC 7321 (HST/WFPC2 R+I image) First CO detections in a few edge-on LSB spirals using the 12m (Matthews & Gao 2001) CO detected in a few positions in NGC 4244

Matthews, Gao, Uson & Combes 2005 SFR(FIR) ~ M(H2) correlation of LSBs roughly follows that of normal spiral disks ( nuclear regions, linear relation: L_FIR/M(H2)=31)

GMCs enbed in diffuse a tomic gas ( HI ), the gas reservoir for molecular clouds, and the supply for future star formation. PDRs

Stars are forming in giant molecular clouds (GMCs)

High Density Tracers Merging/interactions trigger gas infall to nuclear regions Nuclei of Galaxies should possess denser gas as GMCs have to survive to tidal forces (must be denser) Critical density: the radiating molecule (eg, CO) suffers collisions at the rate: n(H2) sigma v = A ( Einstein coefficient A ~ nu^3 mu^2 ) * High-J (>~3) levels of CO (nu ~ J) higher critical density to be excited (>10 5 cm -3 ) * & High dipole moment molecules HCN, HNC, HCO+, CS (mu ~ 30x > CO), etc.. * X factor ? CO-to-H2, HCN-to-DenseH2 conversions

Dense gas is the essential fuel for high mass star/SSC formation in Galaxies HCN Surveys in 53 Galaxies: Gao & Solomon 2004a ApJS Far-IR, HCN, CO Correlations : Gao & Solomon 2004b ApJ

SFR Dense Molecular Gas

Baan, Henkel, Loenen Baan et al. (2008) Kohno 2007, et al. (2003) Imanishi (2006) Aalto et al. 2007, 2002, 1995 Solomon et al Nguyen et al Henkel et al Henkel, Baan, Mauersberger 1991 HCN,CS,HNC etc. in SF gals. Best case studies: Arp 220 & NGC 6240 (Greve )

Gao, Carilli, Solomon & Vanden Bout 2007 ApJ, 660, L93

Wu, Evans, Gao et al ApJL Fit to GMCs Fit to Galaxies Fit to both GMCs & Gals.. Wu+2010

SSCs in nearby galaxies could fill in the gap in FIR-HCN corr. Gap ?

Total useful on-source integration time >~110 hours. HCN spectra with S/N>3 (a channel width dV ~7 km/s). Typical rms ~1-2 mK at dV~20 km/s.

Correlations between 8um-HCN & 24um- HCN. The solid lines: fixed slope of 1.

Correlation between 70um-HCN Correlation between 160um-HCN

Chen & Gao in prep. M31GMCs (Rosolowsky, Pineda & Gao 2011 MN)

∑M dense vs. ∑ SFR Dense H2 show the best correlation with SFR (linear Liu & Gao 2011). Liu & Gao 2011 arXiv:

Poster by Liu+

Bi-modal SF laws in high-z gals (Daddi+2010; Genzel+2010) also exist in local gals

Poster by Liu+

Juneau+2009; Narayanan+2008; Krumholz & Thompson 2007; Mao+2010; Henkel+ Poster SFR – CO & SFR -- HCN indexes

FIR – CS(2-1): linear! (IRAM 30m)

FIR – CS(3-2): linear! (IRAM 30m) FIR – CS(5-4): linear! (SMT 10m, still limited data; Wang, Zhang & Shi 2011 MN)

Poster by Z. Zhang fresh results from the APEX telescope

Concluding Remarks SF: quiescent (few Dense Cores=DCs), normal, active/burst modes (starbursts: active formation of DCs) DCs in Dense Molecular Gas Complexes  High Mass Stars/Clusters (SF in different environments: SMGs/hi-z QSOs; ULIRGs/Starbursts; Spirals; LSBs; DCs) SF thresholds: change of the dominant cold gas phase in galaxies from HI ->H2 & from H2->denseH2 (FIR-HCN, CS Linear Correlations) SFR ~ M(DenseH2): the total mass of dense molecular gas in galaxies & all star-forming systems (spanning 10 orders of mag.)? SFR-DenseGas: Counting DCs(=SF units) in Galaxies? Gao & Solomon: Dense H 2  DCs/StarsClusters