Sunflower Genome Consortium Annual Meeting Nicolas Langlade INRA Toulouse Sunflower Genome Consortium San Diego, January 15 2014.

Slides:



Advertisements
Similar presentations
Planning breeding programs for impact
Advertisements

Potato Mapping / QTLs Amir Moarefi VCR
2 Unité de Biométrie et d’Intelligence Artificielle (UBIA) INRA
Association Mapping as a Breeding Strategy
Genetic Architecture of Kernel Composition in the Nested Association Mapping (NAM) Population Sherry Flint-Garcia USDA-ARS Columbia, MO.
Cultivation of the blue mussel (Mytillus edulis) has grown strongly in Scotland over the last ten years. The further development of sustainable and productive.
1. Gene Regulatory Network 33 Complex molecular and physiological functions are the product of many genes that are coordinated spacially and temporally.
Genetic Basis of Agronomic Traits Connecting Phenotype to Genotype Yu and Buckler (2006); Zhu et al. (2008) Traditional F2 QTL MappingAssociation Mapping.
Perspectives from Human Studies and Low Density Chip Jeffrey R. O’Connell University of Maryland School of Medicine October 28, 2008.
Breeding and Genetics Tools Dr. Brent Hulke Research Geneticist.
Update on the NSA SNP project Dr. Venkatramana Pedagaraju – Molecular Breeding and Genomics Technology Manager Dr. Brent Hulke -- Research Geneticist.
Ecological speciation of a hybrid sunflower, Helianthus anomalus Yuval Sapir, Loren H. Rieseberg Dept. of Biology, Indiana University, Bloomington, IN.
1.Generate mutants by mutagenesis of seeds Use a genetic background with lots of known polymorphisms compared to other genotypes. Availability of polymorphic.
Structural and Functional Genomics of Tomato Barone et al Tomato (Solanum Lycopersicon) – economically important crop worldwide, – intensively investigated.
PAA / Solanaceae July 23-27, Madison, Wisconsin, USA Sequencing the gene-rich space of tomato chromosome 7 Current status of the French effort.
Light response QTL in Arabidopsis thaliana: LIGHT1 cloning Justin Borevitz Ecology & Evolution University of Chicago naturalvariation.org.
Microarrays for mapping and expression analysis: Toward the genetic determinants of light response adaptation in Arabidopsis and Aquilegia Justin Borevitz.
The role of parallel genetic changes in domestication: Fruit size in the plant family Solanaceae Matt Robinson.
Genomic Methods for Cloning QTL Justin Borevitz University of Chicago naturalvariation.org.
Genotyping Results Each person was typed for 3 unlinked Short Tandem Repeat loci (STR) vWFII – chromosome 12, intron 40 of the vWF gene UT 2203 – chromosome.
Positional Cloning LOD Sib pairs Chromosome Region Association Study Genetics Genomics Physical Mapping/ Sequencing Candidate Gene Selection/ Polymorphism.
Genetic and physical maps around the sex-determining M- locus of the dioecious plant asparagus Telgmann-Rauber et al
Evaluation of PacBio sequencing to improve the sunflower genome assembly Stéphane Muños & Jérôme Gouzy Presented by Nicolas Langlade Sunflower Genome Consortium.
EXtreme Array Mapping and Haplotype analysis Using Arrays Justin Borevitz Salk Institute naturalvariation.org.
Studies of Genome Wide Molecular Variation in Arabidopsis thaliana using Arrays Justin Borevitz Salk Institute naturalvariation.org.
Подсолнечник. Helianthus annuus L.
Strong Heart Family Study Phase VI Genetics Center Aims October 8, 2009.
ARC Biotechnology Platform: Sequencing for Game Genomics Dr Jasper Rees
POPULATION GENETIC STRUCTURE AND NATURAL VARIATION OF THE MODEL PLANT, ARABIDOPSIS THALIANA, IN ITS NATIVE SOUTHERN RANGE EXTREME AC Brennan, B Méndez-Vigo,
The New Zealand Institute for Plant & Food Research Limited Potato Genome Sequencing Consortium, notes from the edge Dr Susan Thomson, Dr Mark Fiers, Dr.
Natural Variation in Arabidopsis ecotypes. Using natural variation to understand diversity Correlation of phenotype with environment (selective pressure?)
Howard Hughes Medical Institute-NMSU Research Scholar
Whole genome scans to localise QTL X. Likely positionQTL Chromosome with mapped markers BAC Contig Spanning QTL region New MarkersCandidate Genes Fine.
Oat Molecular Toolbox: Toward Better Oats Nick Tinker, 2014-March-5 Agriculture and Agri-Food Canada.
4th Solanaceae Genome Workshop 2007, September 09th- 13th, Jeju Island, Korea THE FRENCH CONTRIBUTION TO THE INTERNATIONAL TOMATO GENOME SEQUENCING PROGRAM.
Development and Application of SNP markers in Genome of shrimp (Fenneropenaeus chinensis) Jianyong Zhang Marine Biology.
© 2010 by The Samuel Roberts Noble Foundation, Inc. 1 The Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA 2 National Center.
High Resolution Patterns of Variation in the Arabidopsis Genome Justin Borevitz University of Chicago naturalvariation.org.
Overview of developments. Nested Association Mapping (NAM) Jianming Yu, James B. Holland, Michael D. McMullen and Edward S. Buckler, Genetics, Vol. 178,
Gene expression (signal intensity) Control Osmotic Salt Drought Root Control Gene expression (signal intensity) Treatment.

CASE7——RAD-seq for Grape genetic map construction
F2 population x 2. F2 population x 2 Progeny testing x 3.
Genomics of Adaptation
Investigators Institution Expertise
Sunflower Genomic Resources Consortium – Update Meeting (1)assemble, annotate, and curate the sunflower reference genome; (2)integrate the reference sequence.
Institute of Crop Sciences, CAAS
Finding a gene based on phenotype Model organisms ’s of DNA markers mapped onto each chromosome – high density linkage map. 2. identify markers linked.
GENOME ORGANIZATION AS REVEALED BY GENOME MAPPING WHY MAP GENOMES? HOW TO MAP GENOMES?
Risheng Chen et al BMC Genomics
Fall HORT6033 Molecular Plant Breeding
Moukoumbi, Y. D1. , R. Yunus2, N. Yao3, M. Gedil1, L. Omoigui1 and O
BrGSP: the Brassica 'A' genome sequencing project
Investigator (*at F2F) Institution Expertise
Investigators* Institution Expertise
Root cDNA library preparation for untreated (water) and salt challenged plants (treated at 150mM NaCl for 2.0 hrs) Cloning of the library into yeast expression.
Map-based cloning of interesting genes
Mapping Quantitative Trait Loci
The Role of Recently Derived FT Paralogs in Sunflower Domestication
Genome-wide Association Studies
TG216 TG438 T1112 T1355 T1328 T1428 T1962 T1414 T1497 T0676 TM18 CT54 T0966 T0731 TM15 T1347 T1257 T0848 THE FRENCH CONTRIBUTION TO THE INTERNATIONAL.
Volume 2, Issue 1, Pages (January 2009)
Volume 4, Issue 1, Pages (January 2011)
Genome-wide Association Studies in Maize: Praise and Stargaze
2 Unité de Biométrie et d’Intelligence Artificielle (UBIA) INRA
Volume 2, Issue 1, Pages (January 2009)
UniFrac analysis at high time resolution.
Cyanophage-host interactions from metatranscriptomic data.
Volume 2, Issue 1, Pages (January 2009)
Response of attrappc11/rog2 Mutants to Salt Stress.
Presentation transcript:

Sunflower Genome Consortium Annual Meeting Nicolas Langlade INRA Toulouse Sunflower Genome Consortium San Diego, January

INRA participation Sunflower Genome Consortium San Diego, January BAC libraries o Preparation CNRGV (H. Bergès, A. Bellec) o BAC-end sequencing LIPM Ultra High Density Genetic map – SFP using Affymetrix microarrays – Genotyping by sequencing – AXIOM map Genome annotation – Transcriptome sequencing – Transcriptome annotation – Genome annotation per se J. Gouzy, S. Carrère, N. Langlade, S. Muños, P. Vincourt

INRA participation Sunflower Genome Consortium San Diego, January BAC libraries Preparation -CNRGV (Centre National de Ressources Génomiques Végétales) H. Bergès, A. Bellec 3 BAC librairies HA412-HO BAC-end sequencing -LIPM J. Gouzy, P. Vincourt, S. Muños, N. Langlade, B. Mayjonade Development of a method to perform high-troughput BAC-end sequencing First experiment: BAC-ends are there but too much contamination

INRA participation Sunflower Genome Consortium San Diego, January Ultra High Density Genetic map – Genotyping SFP using Affymetrix microarrays P. Vincourt, S. Muños, Y. Lippi, N. Langlade, B. Mayjonade – 105 RILs from XRQxPSC8 population – >3000 mkrs – ~6000 cM  Not used

INRA participation Sunflower Genome Consortium San Diego, January Ultra High Density Genetic map – Genotyping by sequencing P. Vincourt, S. Muños, N. Langlade, B. Mayjonade 2 enzymes: PstI and MseI 2 populations: XRQxPSC8 ~192 RILs FUxPAZ2 ~96 RILs Sequencing finished end December 2013 Results expected spring 2014

INRA participation Sunflower Genome Consortium San Diego, January Ultra High Density Genetic map – Genotyping using Affymetrix AXIOM P. Vincourt, S. Muños, N. Langlade, B. Mangin In collaboration with Biogemma and Syngenta 197,914 SNPs mostly in expressed sequences from a small panel of elite lines 2 populations XRQxPSC8 180 RILs FUxPAZ2 87 RILs  35,562 polymorphic between XRQ and PSC8

INRA participation Sunflower Genome Consortium San Diego, January Ultra High Density Genetic map – Genotyping using Affymetrix AXIOM 1.35,562 polymorphic between XRQ and PSC8 + 1,691 Infinium markers from previous map (Cadic et al., 2013) assign the LG 2. Carthagene Number of markers: 31,757 on the 17 LG Total genetic distance of 1,487.7 cM Number of loci: 1,861 = map XRQxPSC8

INRA participation Sunflower Genome Consortium San Diego, January Ultra High Density Genetic map – Genotyping using Affymetrix AXIOM 1.28,529 polymorphic between XRQ and PSC8 + use of AXIOM XRQxPSC8 map to assign the LG 2. Carthagene Number of markers: 17,901 on the 17 LG Total genetic distance of 1,425.3 cM Number of loci: 807 = map FUxPAZ2

INRA participation Sunflower Genome Consortium San Diego, January Ultra High Density Genetic map – Genotyping using Affymetrix AXIOM 1.7,076 markers polymorphic between XRQ and PSC8, and between FU and PAZ2 + use of AXIOM XRQxPSC8 map to assign the LG 2. Carthagene Number of markers: 7,076 on the 17 LG Total genetic distance of 1,471.1 cM Number of loci: 1,113 = map consensus XRQxPSC8 & FUxPAZ2

INRA participation Sunflower Genome Consortium San Diego, January Ultra High Density Genetic map – Genotyping using Affymetrix AXIOM 1.All markers polymorphic between XRQ and PSC8, or between FU and PAZ2 + use of consensus XRQxPSC8 & FUxPAZ2 map as a skeleton 2. Carthagene Number of markers: 45,566 on the 17 LG Total genetic distance of 1, cM Number of loci: 2,711 = final map XRQxPSC8 & FUxPAZ2

INRA participation Sunflower Genome Consortium San Diego, January Ultra High Density Genetic map – Genotyping using Affymetrix AXIOM 1.Final map XRQxPSC8 & FUxPAZ2 2.Context sequences of the 31,757 markers polymorphic between XRQ and PSC8 and mapped 71bp context sequences Collaborative project with Biogemma and Syngenta Available now

INRA participation Sunflower Genome Consortium San Diego, January BAC libraries o Preparation CNRGV (H. Bergès, A. Bellec) o BAC-end sequencing LIPM Ultra High Density Genetic map – SFP using Affymetrix microarrays – Genotyping by sequencing – AXIOM map Genome annotation – Transcriptome sequencing – Transcriptome annotation – Genome annotation per se

INRA participation Sunflower Genome Consortium San Diego, January Transcriptome sequencing – Organ-specific transcriptomes XRQ/B inbred line Webportal

INRA participation Sunflower Genome Consortium San Diego, January Transcriptome sequencing – Suggestion: Range of abiotic stresses on the XRQ/B line: 1.Drought in leaves week old plants 2.Leaves 3.Range of stress intensities 2.Salt stress 1.Plantlets (10 days) 2.Leaves and Roots 3.2 conditions (CTL, NaCl 100 mM) 3.Osmotic stress 1.Plantlets (10 days) 2.Leaves and Roots 3.2 conditions (CTL, NaCl 100 mM) 4.? Cold 1.Plantlets (10 days) 2.Leaves and Roots 3.4 conditions (CTL time 1, 4°C time 1, CTL time 2, 20°C recovery time 2)

INRA participation Sunflower Genome Consortium San Diego, January BAC libraries o Preparation CNRGV (H. Bergès, A. Bellec) o BAC-end sequencing LIPM Ultra High Density Genetic map – SFP using Affymetrix microarrays – Genotyping by sequencing – AXIOM map Genome annotation – Transcriptome sequencing – Transcriptome annotation – Genome annotation per se

Principle of a MAGIC population Bandillo et al. Rice :11 doi: / F1 IM1 IM2 IM2-S1 IM2-S2 IM2-S3 Sunflower Genome Consortium San Diego, January

Sunflower MAGIC population proposal Two populations – Male 400 RILs – Female 400 RILs Wild parents introgressed in cultivated germplasm – 2*5 different Helianthus species and wild H. annuus from UBC germplasm – 6 different B-lines from collaborators – 6 different R-lines from collaborators Sunflower Genome Consortium San Diego, January

Tentative list of the wild material involved 10 wild founders from UBC germplasm W1H.annuusOklahoma FT annuus W2H.annuusModern weedy annuus W3H.annuusUtah annuus (sweep for drought) W4H.annuus? W5H.petiolarisGSD Large seeded W6H.neglectusLarge seeded sand dune W7H.argophyllusShort day W8H.bolanderiNorthern range serpintine W9H.anomalus? W10?? Sunflower Genome Consortium San Diego, January

MAGIC population development W1 X->F1-1 E1 X->IM1-1 E2 x->F1-2 E3 W2 X->F1-3 E2 X->IM1-2 E3 x->F1-4 E4 W3 X->F1-5 E3 X->IM1-3 E4 x->F1-6 E5 W5 X->F1-9 E5 X IM1-5 E6 X->F1-10 E1 … Sunflower Genome Consortium San Diego, January

MAGIC population development W1 X->F1-1 E1 X->IM1-1 E2 x->F1-2 E3 W2 X->F1-3 E2 X->IM1-2 E3 x->F1-4 E4 W3 X->F1-5 E3 X->IM1-3 E4 x->F1-6 E5 W5 X->F1-9 E5 X IM1-5 E6 X->F1-10 E1 … IM2-1 IM2-2 IM2-3 Sunflower Genome Consortium San Diego, January

MAGIC population development W1 X->F1-1 E1 X->IM1-1 E2 x->F1-2 E3 W2 X->F1-3 E2 X->IM1-2 E3 x->F1-4 E4 W3 X->F1-5 E3 X->IM1-3 E4 x->F1-6 E5 W5 X->F1-9 E5 X IM1-5 E6 X->F1-10 E1 … IM2-1 IM2-2 IM2-3 IM1-1 IM1-2IM1-3IM1-4IM1-5 IM1-1 IM2-1 IM2-2 ……… IM1-2 ……… IM1-3 …… IM1-4 … IM1-5 Sunflower Genome Consortium San Diego, January

MAGIC population development W1 X->F1-1 E1 X->IM1-1 E2 x->F1-2 E3 W2 X->F1-3 E2 X->IM1-2 E3 x->F1-4 E4 W3 X->F1-5 E3 X->IM1-3 E4 x->F1-6 E5 W5 X->F1-9 E5 X IM1-5 E6 X->F1-10 E1 … IM2-1 IM2-2 IM2-3 IM2-1-S1-1 IM2-1-S1-2 … IM2-1-S1-20 IM1-1 IM1-2IM1-3IM1-4IM1-5 IM1-1 IM2-1 IM2-2 ……… IM1-2 ……… IM1-3 …… IM1-4 … IM1-5 Sunflower Genome Consortium San Diego, January

W1 X->F1-1 E1 X->IM1-1 E2 x->F1-2 E3 W2 X->F1-3 E2 X->IM1-2 E3 x->F1-4 E4 W3 X->F1-5 E3 X->IM1-3 E4 x->F1-6 E5 W5 X->F1-9 E5 X IM1-5 E6 X->F1-10 E1 … IM2-1 IM2-2 IM2-3 IM2-1-S1-1 IM2-1-S1-2 … IM2-1-S families Each 20 lines  400 lines wilds 6 R-lines Sunflower Genome Consortium San Diego, January