Circle Theorems Learning Outcomes  Revise properties of isosceles triangles, vertically opposite, corresponding and alternate angles  Understand the.

Slides:



Advertisements
Similar presentations
Circle Theory.
Advertisements

Angles in Circles Objectives: B GradeUse the tangent / chord properties of a circle. A GradeProve the tangent / chord properties of a circle. Use and prove.
Draw and label on a circle:
Mr Barton’s Maths Notes
10.1 Tangents to Circles Geometry.
Dr J Frost GCSE Circle Theorems Dr J Frost Last modified: 19th February 2014.
Angles in Circles Angles on the circumference Angles from a diameter
Proofs for circle theorems
© Circle theorems workout 1.
Circle - Introduction Center of the circle Radius Diameter Circumference Arc Tangent Secant Chord.
Circle Theorems.
Chapter 5 Properties of Circles Chung Tai Educational Press © Chapter Examples Quit Chapter 5 Properties of Circles Terminology about Circle Centre.
Circle Properties Part I. A circle is a set of all points in a plane that are the same distance from a fixed point in a plane The set of points form the.
Unit 32 Angles, Circles and Tangents Presentation 1Compass Bearings Presentation 2Angles and Circles: Results Presentation 3Angles and Circles: Examples.
CIRCLE THEOREMS. TANGENTS A straight line can intersect a circle in three possible ways. It can be: A DIAMETERA CHORD A TANGENT 2 points of intersection.
YEAR 11 REVISION BLASTER UNIT 2 STAGE 2. GCSE MATHS REVISION UNIT 2 (stage 2) – all about: SHAPE & ALGEBRA & NUMBER Circle theorems Angles & lines & shapes.
Circle Theorems  Identify a tangent to a circle  Find angles in circles Tangents Angles in a semicircle Cyclic quadrilateral Major and minor segments.
Geometry 6 Level 1. Parts of a circle Why is this triangle isosceles?
Angles in Circles Objectives: B GradeUse the angle properties of a circle. A GradeProve the angle properties of a circle.
Angles and Arcs October 2007 Warm-up Find the measure of BAD.
© T Madas O O O O O O O The Circle Theorems. © T Madas 1 st Theorem.
Circle Theorems Revision
Diameter Radius Circumference of a circle = or Area of a circle = r2r2.
Circle Theorems Part 3 - Tangents.
The perpendicular bisector of a chord passes through the centre of a circle B A O M OBM = 28 0 Prove this. AOB = = AOB.
Space and Shape Grade 9 Math.
A B P O α That is, no matter where you place point P, the angle α is always 90 0 Note: AB is the diameter of the circle whose centre is at O.
Circle theorems Double Angle Triangles inside Circles Angles connected by a chord Tangents to a circle Cyclic Quadrilaterals.
Shape and Space CIRCLE GEOMETRY. Circle Geometry Rule 1 : ANGLE IN A SEMICIRCLE = 90° A triangle drawn from the two ends of a diameter will always make.
Revision- Circle Theorems o A B Theorem 1 The angle at the centre is twice the one at the circumference. C Angle AOB is double angle ACB.
Chapter 12 Angle Properties of a Circle. Recall O is the centre of circle OA = OB ( radius of Circle ) Major sector Major Arc AB Minor sector Minor Arc.
Circles.
Circle Radius Diameter Tangent Circumference. Angles subtended by the same chord are equal Chord.
Chapter 25 Circle Properties. Circles Circumference = Distance whole way round Arc = Distance round part of circle Radius = Line from centre to edge Diameter.
2. Chords are of equal length if and only if they are equidistant from the centre of circle.
Starter 1) Draw a circle. Label the circumference. Draw and label the radius and diameter. 2) Draw another circle. Draw and label a chord, a sector, an.
Circle Theorems The angle at the centre is twice the angle at the circumference for angles which stand on the same arc.
Circle Theorem Remember to look for “basics” Angles in a triangle sum to Angles on a line sum to Isosceles triangles (radius) Angles about.
10 th,11 th,12 th, JEE, CET, AIPMT Limited Batch Size Experienced faculty Innovative approach to teaching.
CIRCLE THEOREMS LO: To understand the angle theorems created with a circle and how to use them. Draw and label the following parts of the circle shown.
Chapter 5 Properties of Circles Chung Tai Educational Press © Chapter Examples Quit Chapter 5 Properties of Circles Terminology about Circle Centre.
Mr Barton’s Maths Notes
KS4 Mathematics S5 Circles.
Skipton Girls’ High School
Circle theorems workout
Circle Theorems.
Circle theorems workout
Draw and label on a circle:
Remember to look for “basics”
Circle Geometry and Theorems
Angle at the centre is double the angle at the circumference
The Circle Label the diagrams using the key words Radius Diameter
Circle Theorems.
Geometry Revision Basic rules
Circle Theorems.
Circle Theorems.
Shape and Space 3. Circle Theorems
Circle Theorems.
Isosceles triangles + perp. bisectors
Dr J Frost GCSE Circle Theorems Dr J Frost Last.
Naming the parts of a circle A circle is a set of points equidistant from its centre. circumference: distance around the outside of a circle tangent.
Circle Theorems L.O. All pupils can label parts of circles
Revision Circle Theorems
Circle Theorems.
28. Circle Theorems.
Circle Theorem Proofs Semi-Circle Centre Cyclic Quadrilateral
Circle Theorems Give a REASON for each answer
Presentation transcript:

Circle Theorems Learning Outcomes  Revise properties of isosceles triangles, vertically opposite, corresponding and alternate angles  Understand the terminology used – angle subtended by an arc or chord  Use an investigative approach to find angles in a circle, to include: Angle in a semicircle Angle at centre and circumference Angles in the same segment Cyclic quadrilaterals Angle between tangent and radius and tangent kite Be able to prove and use the alternate segment theorem

Circle Theorems Circle Theorem 1 The angle at the centre of a circle is double the size of the angle at the edge Angle AOB = 2 x ADB AB D O For angles subtended by the same arc, the angle at the centre is twice the angle at the circumference

Circle Theorems Circle Theorem 2 Angles in the same segment are equal Angle ACB = Angle ADB For angles subtended by the same arc are equal A B DC

Circle Theorems Example: Find angle CDE and CFE. C E F D 152 ° O

Circle Theorems Example: Find giving reasons i) ABO ii) AOB iii) ADB 40 ° A B D O

Circle Theorems Example: Find giving reasons i) BAC ii) ABD B A C D 60 ° 38 °

Circle Theorems Circle Theorem 3 Opposite angles in a cyclic quadrilateral add up to 180° Angle D + Angle B = 180° Angle A + Angle C = 180° A cyclic quadrilateral is a quadrilateral whose vertices all touch the circumference of a circle. The opposite angles add up to 180 °

Circle Theorems 1.Draw Triangle ABC with B in 3 different positions on the circumference. 2.Measure ABC for each of the 3 triangles. AB 1 C = AB 2 C = AB 3 C = A C 3.Complete the theorem : The angle in a semicircle is

Circle Theorems 32 ° x y 2x2x 3x3x y 72 ° Find the unknown angles.

Circle Theorems Circle Theorem 4 The angle between the tangent and the radius is 90° The angle between a radius (or diameter) and a tangent is 90 This circle theorem gives rise to one ‘Tangent Kite’

Circle Theorems ‘Tangent Kite’ When 2 tangents are drawn from the point x a kite results. The tangents are of equal length BX = AX Given OA = OB (radius) OX is common the, the 2 triangles OAX and OBX are congruent. A B x O

Circle Theorems Circle Theorem 5 Alternate Segment Theorem Look out for a triangle with one of its vertices resting on the point of contact of the tangent The angle between a tangent and a chord is equal to the angle subtended by the chord in the alternate segment tangent chord Alternate segment

Circle Theorems Circle Theorem 5 Find all the missing angles in the diagram below, also giving reasons. A B x O 40 ° i) BOA = ii) ACB = C iii) ABX =iii) BAO =

Circle Theorems Exam Question In the diagram above, O is the centre of the circle and PTQ is a tangent to the circle at T. The angle POQ = 90 ° and the angle SRT = 26 ° (a) Explain why angle OTQ is 90 ° (b) Find the size of the angles (i) TOQ (ii) OPT (c) The angle RTQ is 57 ° Find the size of the angle RUT P Q O T R U S 26 ° [1] [2]

Circle Theorems Additional Notes

Circle Theorems  Revise properties of isosceles triangles, vertically opposite, corresponding and alternate angles  Understand the terminology used – angle subtended by an arc or chord  Use an investigative approach to find angles in a circle, to include: Angle in a semicircle Angle at centre and circumference Angles in the same segment Cyclic quadrilaterals Angle between tangent and radius and tangent kite Be able to prove and use the alternate segment theorem Can Revise Do Further       Learning Outcomes: At the end of the topic I will be able to