Copyright © 2013, 2009, 2005 Pearson Education, Inc. 1 5 Trigonometric Identities.

Slides:



Advertisements
Similar presentations
Warm Up Verify that the equation is an identity..
Advertisements

10.3 Double Angle and Half Angle Formulas
Memorization Quiz Reciprocal (6) Pythagorean (3) Quotient (2) Negative Angle (6) Cofunction (6) Cosine Sum and Difference (2)
Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall. Section 6.3 Properties of the Trigonometric Functions.
Copyright © 2014, 2010, 2007 Pearson Education, Inc. 1 Objectives: Use the formula for the cosine of the difference of two angles. Use sum and difference.
Section 7.2 The Inverse Trigonometric Functions (Continued)
In these sections, we will study the following topics:
5.1 Fundamental Trig Identities sin (  ) = 1cos (  ) = 1tan (  ) = 1 csc (  )sec (  )cot (  ) csc (  ) = 1sec (  ) = 1cot (  ) = 1 sin (  )cos.
Copyright © 2009 Pearson Education, Inc. CHAPTER 7: Trigonometric Identities, Inverse Functions, and Equations 7.1Identities: Pythagorean and Sum and.
Trigonometric Identities I
Chapter 4 Analytic Trigonometry Section 4.3 Double-Angle, Half-Angle and Product- Sum Formulas.
Chapter 4 Identities 4.1 Fundamental Identities and Their Use
Copyright © Cengage Learning. All rights reserved. Analytic Trigonometry.
CHAPTER 7: Trigonometric Identities, Inverse Functions, and Equations
Chapter 6 Trig 1060.
Sum and Difference Formulas New Identities. Cosine Formulas.
Copyright © 2013, 2009, 2005 Pearson Education, Inc. 1 5 Trigonometric Identities Copyright © 2013, 2009, 2005 Pearson Education, Inc. 1.
Section 5.1 Verifying Trigonometric Identities.
1 © 2010 Pearson Education, Inc. All rights reserved © 2010 Pearson Education, Inc. All rights reserved Chapter 5 Analytic Trigonometry.
CHAPTER 7: Trigonometric Identities, Inverse Functions, and Equations
Vocabulary reduction identity. Key Concept 1 Example 1 Evaluate a Trigonometric Expression A. Find the exact value of cos 75°. 30° + 45° = 75° Cosine.
Copyright © 2009 Pearson Addison-Wesley Trigonometric Identities.
Copyright © 2008 Pearson Addison-Wesley. All rights reserved Fundamental Identities 5.2 Verifying Trigonometric Identities 5.3 Sum and Difference.
Using Trig Formulas In these sections, we will study the following topics: o Using the sum and difference formulas to evaluate trigonometric.
Using Trig Formulas In these sections, we will study the following topics: Using the sum and difference formulas to evaluate trigonometric.
Using Fundamental Identities To Find Exact Values. Given certain trigonometric function values, we can find the other basic function values using reference.
Copyright © 2013, 2009, 2005 Pearson Education, Inc. 1 Inverse, Exponential, and Logarithmic Functions Copyright © 2013, 2009, 2005 Pearson Education,
Slide Fundamental Identities 5.2 Verifying Trigonometric Identities 5.3 Sum and Difference Identities for Cosine 5.4 Sum and Difference Identities.
Chapter 5 Analytic Trigonometry Sum & Difference Formulas Objectives:  Use sum and difference formulas to evaluate trigonometric functions, verify.
Slide 9- 1 Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley.
Copyright © Cengage Learning. All rights reserved. 5.1 Using Fundamental Identities.
Copyright © 2013, 2009, 2005 Pearson Education, Inc. 1 5 Trigonometric Identities.
Trigonometric Identities
Copyright © 2013, 2009, 2005 Pearson Education, Inc. 1 5 Trigonometric Identities.
Copyright © 2013, 2009, 2005 Pearson Education, Inc. 1 5 Trigonometric Identities.
Copyright © 2009 Pearson Addison-Wesley Trigonometric Identities.
1 © 2011 Pearson Education, Inc. All rights reserved 1 © 2010 Pearson Education, Inc. All rights reserved © 2011 Pearson Education, Inc. All rights reserved.
Chapter 5 Analytic Trigonometry Copyright © 2014, 2010, 2007 Pearson Education, Inc Verifying Trigonometric Identities.
Copyright © 2011 Pearson Education, Inc. Publishing as Prentice Hall.
Copyright © 2005 Pearson Education, Inc.. Chapter 5 Trigonometric Identities.
Copyright © 2009 Pearson Addison-Wesley Trigonometric Identities.
Copyright © 2013, 2009, 2005 Pearson Education, Inc. 1 6 Inverse Circular Functions and Trigonometric Equations.
Pg. 407/423 Homework Pg. 407#33 Pg. 423 #16 – 18 all #9 tan x#31#32 #1x = 0.30, 2.84#2x = 0.72, 5.56 #3x = 0.98#4No Solution! #5x = π/6, 5π/6#6Ɵ = π/8.
Chapter 6 Analytic Trigonometry Copyright © 2014, 2010, 2007 Pearson Education, Inc Verifying Trigonometric Identities.
Double-Angle and Half-Angle Identities
Copyright © 2014, 2010, 2007 Pearson Education, Inc.
DOUBLE-ANGLE AND HALF-ANGLE FORMULAS
5 Trigonometric Identities.
Fundamental Identities
7.2 Addition and Subtraction Formulas
Copyright © 2014, 2010, 2007 Pearson Education, Inc.
Copyright © 2014, 2010, 2007 Pearson Education, Inc.
DO NOW 14.6: Sum and Difference Formulas (PC 5.4)
7 Trigonometric Identities and Equations
Copyright © 2017, 2013, 2009 Pearson Education, Inc.
Copyright © 2014, 2010, 2007 Pearson Education, Inc.
Copyright © 2014, 2010, 2007 Pearson Education, Inc.
7 Trigonometric Identities and Equations
Trigonometric identities and equations Sum and difference identities
Copyright © 2014, 2010, 2007 Pearson Education, Inc.
cos 2A = 1 – 2 sin² A or cos 2A = 2 cos² A – 1.
Multiple-Angle and Product-to-Sum Formulas (Section 5-5)
Double-Angle and Half-Angle Formulas 5.3
Copyright © 2017, 2013, 2009 Pearson Education, Inc.
Identities: Cofunction, Double-Angle and Half-Angle
Copyright © 2014, 2010, 2007 Pearson Education, Inc.
Double-Angle, Half-Angle Formulas
7.3 Sum and Difference Identities
Sum and Difference Formulas (Section 5-4)
Copyright © 2017, 2013, 2009 Pearson Education, Inc.
Presentation transcript:

Copyright © 2013, 2009, 2005 Pearson Education, Inc. 1 5 Trigonometric Identities

Copyright © 2013, 2009, 2005 Pearson Education, Inc Fundamental Identities 5.2 Verifying Trigonometric Identities 5.3 Sum and Difference Identities for Cosine 5.4 Sum and Difference Identities for Sine and Tangent 5.5Double-Angle Identities 5.6Half-Angle Identities 5 Trigonometric Identities

Copyright © 2013, 2009, 2005 Pearson Education, Inc. 3 Sum and Difference Identities for Sine and Tangent 5.4 Sum and Difference Identities for Sine ▪ Sum and Difference Identities for Tangent ▪ Applying the Sum and Difference Identities ▪ Verifying an Identity

Copyright © 2013, 2009, 2005 Pearson Education, Inc. 4 Sum and Difference Identities for Sine Cofunction identity We can use the cosine sum and difference identities to derive similar identities for sine and tangent. Cosine difference identity Cofunction identities

Copyright © 2013, 2009, 2005 Pearson Education, Inc. 5 Sum and Difference Identities for Sine Sine sum identity Negative-angle identities

Copyright © 2013, 2009, 2005 Pearson Education, Inc. 6 Sine of a Sum or Difference

Copyright © 2013, 2009, 2005 Pearson Education, Inc. 7 Sum and Difference Identities for Tangent Fundamental identity Sum identities Multiply numerator and denominator by 1.

Copyright © 2013, 2009, 2005 Pearson Education, Inc. 8 Sum and Difference Identities for Tangent Multiply. Simplify. Fundamental identity Replace B with –B and use the fact that tan(–B) = –tan B to obtain the identity for the tangent of the difference of two angles.

Copyright © 2013, 2009, 2005 Pearson Education, Inc. 9 Tangent of a Sum or Difference

Copyright © 2013, 2009, 2005 Pearson Education, Inc. 10 Example 1(a) FINDING EXACT SINE AND TANGENT FUNCTION VALUES Find the exact value of sin 75 .

Copyright © 2013, 2009, 2005 Pearson Education, Inc. 11 Example 1(b) FINDING EXACT SINE AND TANGENT FUNCTION VALUES Find the exact value of

Copyright © 2013, 2009, 2005 Pearson Education, Inc. 12 Example 1(c) FINDING EXACT SINE AND TANGENT FUNCTION VALUES Find the exact value of

Copyright © 2013, 2009, 2005 Pearson Education, Inc. 13 Example 2 WRITING FUNCTIONS AS EXPRESSIONS INVOLVING FUNCTIONS OF θ Write each function as an expression involving functions of θ. (a) (b) (c)

Copyright © 2013, 2009, 2005 Pearson Education, Inc. 14 Example 3 FINDING FUNCTION VALUES AND THE QUADRANT OF A + B Suppose that A and B are angles in standard position with Find each of the following.

Copyright © 2013, 2009, 2005 Pearson Education, Inc. 15 Example 3 FINDING FUNCTION VALUES AND THE QUADRANT OF A + B (continued) The identity for sin(A + B) involves sin A, cos A, sin B, and cos B. The identity for tan(A + B) requires tan A and tan B. We must find cos A, tan A, sin B and tan B. Because A is in quadrant II, cos A is negative and tan A is negative.

Copyright © 2013, 2009, 2005 Pearson Education, Inc. 16 Example 3 FINDING FUNCTION VALUES AND THE QUADRANT OF A + B (continued) Because B is in quadrant III, sin B is negative and tan B is positive.

Copyright © 2013, 2009, 2005 Pearson Education, Inc. 17 Example 3 FINDING FUNCTION VALUES AND THE QUADRANT OF A + B (continued) (a) (b)

Copyright © 2013, 2009, 2005 Pearson Education, Inc. 18 Example 3 FINDING FUNCTION VALUES AND THE QUADRANT OF A + B (continued) (c) From parts (a) and (b), sin (A + B) > 0 and tan (A + B) > 0. The only quadrant in which the values of both the sine and the tangent are positive is quadrant I, so (A + B) is in quadrant I.

Copyright © 2013, 2009, 2005 Pearson Education, Inc. 19 Example 4 VERIFYING AN IDENTITY USING SUM AND DIFFERENCE IDENTITIES Verify that the equation is an identity.