RESEARCH INTEREST RELATED TO CARBON MONITORING Postgrado Forestal, Colegio de Postgraduados (CP), Montecillo, Texcoco, Edo. de México

Slides:



Advertisements
Similar presentations
USAID-CIFOR-ICRAF Project Assessing the Implications of Climate Change for USAID Forestry Programs (2009) 1 Carbon accounting: Field measurements Topic.
Advertisements

TALLER SOBRE MEDICIÓN DE LAS REMESAS DE LOS MIGRANTES MEXICANOS EN ESTADOS UNIDOS Fernando Lozano-Ascencio Sesión 3. Análisis de la base de datos de remesas.
REDD+ A sub-national pilot project in CHIAPAS, MEXICO.
The Alaska Forest Disturbance Carbon Tracking System T. Loboda, E. Kasischke, C. Huang (Univ. MD), N. French (MTRI) J. Masek, J. Collatz (GSFC), D. McGuire,
Time Series Fusion of Optical and Radar Imagery for Improved Monitoring of Activity Data, and Uncertainty Analysis of Emission Factors for Estimation of.
Forest Monitoring of the Congo Basin using Synthetic Aperture Radar (SAR) James Wheeler PhD Student Supervisors: Dr. Kevin Tansey,
The status of science to support REDD+ based mitigation policies of Mexico Bernardus de Jong, El Colegio de la Frontera Sur Fernando Paz, Colegio de Postgraduados.
HIDROCIENCIAS MODEL TO ESTIMATE THE AERIAL FOREST BIOMASS BY REMOTE SENSING IN THE CHIAPAS STATE. Marcos Casiano Domínguez Director: Fernando Paz Pellat.
A data assimilation approach to quantify uncertainty for estimates of biomass stocks and changes in Amazon forests Paul Duffy Michael Keller Doug Morton.
SDCG-4, Caltech, CA, USA 4 th -6 th September 2013 Author/Presenter MRV & Reporting Status & Related Space Data.
Sistema de Monitoreo de la Cobertura del Suelo de América del Norte.
Module 2.2 Monitoring activity data for forests remaining forests (incl. forest degradation) REDD+ Sourcebook training materials by GOFC-GOLD, Wageningen.
Remote Sensing Forest Fires: Before and After Rob Gaboy & Aimee Treutlein.
Modelado y Operación del Transistor MOS 1 Sección 3.
Análisis de datos atípicos. Los efectos de los atipicos.
Module 2.2 Monitoring activity data for forests remaining forests (incl. forest degradation) REDD+ Sourcebook training materials by GOFC-GOLD, Wageningen.
Urban Planning Applications of GIS GIS can be applied to many types of problem. Among these are representatives of both raster and vector data base structures,
Overview of Biomass Mapping The Woods Hole Research Center Alessandro Baccini, Wayne Walker and Ned Horning November 8 – 12, Samarinda, Indonesia.
Compton Tucker, GSFC Sassan Satchi, JPL Jeff Masek, GSFC Rama Nemani, ARC Diane Wickland, HQ Terrestrial Biomass Pilot Product: Estimating Biomass and.
Module 2.1 Monitoring activity data for forests using remote sensing REDD+ training materials by GOFC-GOLD, Wageningen University, World Bank FCPF 1 Module.
Landscape-scale forest carbon measurements for reference sites: The role of Remote Sensing Nicholas Skowronski USDA Forest Service Climate, Fire and Carbon.
Chuvieco and Huete (2009): Fundamentals of Satellite Remote Sensing, Taylor and Francis Emilio Chuvieco and Alfredo Huete Fundamentals of Satellite Remote.
CARBON STOCKS IN TROPICAL FORESTS OF MEXICO Víctor J. Jaramillo 1, Angelina Martínez-Yrízar 2, Luz Piedad Romero-Duque 1, J. Boone Kauffman 3 & Felipe.
Rindsel: a R package for Selection Indices
Development of indicators of fire severity based on time series of SPOT VGT data Stefaan Lhermitte, Jan van Aardt, Pol Coppin Department Biosystems Modeling,
Digital Numbers The Remote Sensing world calls cell values are also called a digital number or DN. In most of the imagery we work with the DN represents.
Mapping Forest Canopy Height with MISR We previously demonstrated a capability to obtain physically meaningful canopy structural parameters using data.
FAO Actions Related to GFOI Components. FAO history in forest monitoring and assessment Began in 1946 focused on commercial timber Activities involving.
The role of remote sensing in Climate Change Mitigation and Adaptation.
Chuvieco and Huete (2009): Fundamentals of Satellite Remote Sensing, Taylor and Francis Emilio Chuvieco and Alfredo Huete Fundamentals of Satellite Remote.
Jessica Schaefer. Introduction - Historically, ecological research was conducted in pristine wilderness areas - It is estimated that between 1/3 and ½.
Translation to the New TCO Panel Beverly Law Prof. Global Change Forest Science Science Chair, AmeriFlux Network Oregon State University.
Measuring degradation for REDD+ forest reference emission levels / forest reference levels (FREL/FRL) Julian Fox Forestry Officer (UN-REDD) Food and Agriculture.
1 Methods and Tools for Measurement, Monitoring and Verification for Soil Carbon Sequestration Markets Charles W. Rice Department of Agronomy K-State Research.
Height Growth [m/3yr] An example: Stand biomass estimation by LiDAR.
Monitoring Tropical forests with L-band radar: lessons from Indonesian Peat Swamps Matt Waldram, Sue Page, Kevin Tansey Geography Department.
Breakout Session IV: Applying Remote Sensing Observations to Impacts Assessment Background (1) The IPCC WG 2 Report (2008) “Climate Change Impacts, Adaptation.
Flux observation: Integrating fluxes derived from ground station and satellite remote sensing 王鹤松 Hesong Wang Institute of atmospheric physics, Chinese.
Gulf of Mexico Primary Productivity Estimates of NPP based on NASA Satellite data.
Chuvieco and Huete (2009): Fundamentals of Satellite Remote Sensing, Taylor and Francis Emilio Chuvieco and Alfredo Huete Fundamentals of Satellite Remote.
DN Ordinate Length DN Difference Estimating forest structure in tropical forested sites.
Dave Siegel, Kyle Cavanaugh, Brian Kinlan, Dan Reed, Phaedon
SDCG-4, Caltech, CA, USA 4 th -6 th September 2013 MRV & Reporting Status & Related Space Data Needs COLOMBIA Edersson.
Systematic Terrestrial Observations: a Case for Carbon René Gommes with C. He, J. Hielkema, P. Reichert and J. Tschirley FAO/SDRN.
Linking oceanographic processes and marine resources in the Western Caribbean Laura Carrillo, Ph.D. EL COLEGIO DE LA FRONTERA SUR LATIN AMERICAN AND CARIBBEAN.
Goal: to understand carbon dynamics in montane forest regions by developing new methods for estimating carbon exchange at local to regional scales. Activities:
Comparing Three Great Lakes Research Projects By Mary Bresee.
Copyright © 2015, SAMSUNG TECHWIN AMERICA. All Rights reserved 1 pixel Software de Monitoreo Permite el operador tener acceso a las cámaras y grabadores.
Citation: Richardson, J. J, L.M. Moskal, S. Kim, Estimating Urban Forest Leaf Area Index (LAI) from aerial LiDAR. Factsheet # 5. Remote Sensing and.
NATIONAL REDD+ STRATEGY MEXICO GCF task force – Palangka Raya, September 2011 Jorge Mendoza, Ben de Jong, Victor Ku, El Colegio de la Frontera Sur.
Citation: Moskal., L. M. and D. M. Styers, Land use/land cover (LULC) from high-resolution near infrared aerial imagery: costs and applications.
ReCover for REDD and sustainable forest management 1 An overview of the ReCover project, focusing on the Democratic Republic of Congo 04 October 2012,
Landsat Satellite Data. 1 LSOS (1-ha) 9 Intensive Study Areas (1km x 1km) 3 Meso-cell Study Areas (25km x 25km) 1 Small Regional Study Area (1.5 o x 2.5.
Using inventory data as a proxy de delimit forest degradation Joint GFOI/GOFC-GOLD Expert Workshop 2: Approaches to monitoring forest degradation for REDD+
“ Exchange and training Workshop on satellite forest monitoring systems for REDD+” 3 rd to 5 th September 2014 Panama City, Panama 2 nd UN-REDD Latin-American.
Factsheet # 17 Understanding multiscale dynamics of landscape change through the application of remote sensing & GIS Estimating Tree Species Diversity.
Hyperspectral Sensing – Imaging Spectroscopy
Factsheet # 12 Understanding multiscale dynamics of landscape change through the application of remote sensing & GIS Land use/land cover (LULC) from high-resolution.
USGS contribution to assessing mangrove conditions using a multidisciplinary approach Elitsa Peneva-Reed 24 October, 2017.
TRABAJO FINAL FORTALECIMIENTO DE ORGANIZACIONES SOLIDARIAS Lineamientos trabajo final entrega personal.
GPR MALA Modelo Widerange ➤ Nombres: Carlos Flores Gianfranco Gregorina Maicol Guzman Leslie Huidobro Tomas Ibañez ➤ Profesor: Héctor Zúñiga ➤ Geofísica.
Digital Numbers The Remote Sensing world calls cell values are also called a digital number or DN. In most of the imagery we work with the DN represents.
Potential Landsat Contributions
Joint Remote Sensing Research Program 2016 Research Updates
La Boutique Del PowerPoint.net
Програмата е насочена към обновяване на многофамилни жилищни сгради, като с нея се цели чрез изпълнение на мерки за енергийна ефективност да се осигурят.
The impact of climate change on semi-natural meadows in Northern Portugal - A time-frequency analysis Mario Cunha, University of Porto and Christian Richter,
Big data for Global Change Ecology (Biogeography)
Forest / Non-forest (FNF) mapping for Viet Nam using PALSAR-2 time series images 2019/01/22 Truong Van Thinh – Master’s Program in Environmental.
Presentation transcript:

RESEARCH INTEREST RELATED TO CARBON MONITORING Postgrado Forestal, Colegio de Postgraduados (CP), Montecillo, Texcoco, Edo. de México J. René Valdez-Lazalde SAGARPA Colegio de Postgraduados

Even-age managed forest

UNITED MEXICAN STATES

Materials and Methods Localización del área de estudio Figure 1. Location of the study area

Objective/Interest   To assess and monitor forest carbon inventory dynamics due to management practices   To develop state and regional spatial models to estimate forest carbon and forest carbon related related variables through spectral and field generated data.

Localización del área de estudio Carbon Estimated using Satellite Data -- Zacualtipan, Hgo. Méx -- Aguirre et al., 2009

  Temperate forest, Hidalgo State (INEGI Serie III). Current Area of Interest

National Forest Inventory (INFyS):   230 sites in the state of Hidalgo   181 sites in Hidalgo temperate forest   Pasive and active remote sensors (Landsat, SPOT, RADAR, LIDAR) Materials y Methods

Colecta de información de la estructura del rodal (Alt, DAP, etc.) BIOMASA Datos de parcelas por grupo de especies, rodal o ecosistema (Inventario) 80% Cal 20% Val B = f (Alt, DAP) Selección de bandas e Índices espectrales Modelo a Nivel Pixel Alt = f (Datos Espectrales) DAP = f (Datos Espectrales) Aplicación de modelos para mapear las variables del bosque seleccionadas Alt, DAP Imagen Multiespectral, RADAR Carbon Estimation 50 Ton/ha 129 Ton/ha Ton/ha

COLEGIO DE POSTGRADUADOS J. René Valdez Lazalde J. René Valdez Lazalde Postgrado Forestal SAGARPA