Section 4.3 The Derivative in Graphing and Applications- “Analysis of Functions III: Rational Functions, Cusps, and Vertical Tangents”

Slides:



Advertisements
Similar presentations
Calculus, 9/E by Howard Anton, Irl Bivens, and Stephen Davis Copyright © 2009 by John Wiley & Sons, Inc. All rights reserved. MCS 122 Chapter 1 Review.
Advertisements

Integration: “the Definition of Area as a Limit; Sigma Notation”
“Before Calculus”: Families of Functions.  Calculus,10/E by Howard Anton, Irl Bivens, and Stephen Davis Copyright © 2009 by John Wiley & Sons, Inc. All.
Section 4.4 The Derivative in Graphing and Applications- “Absolute Maxima and Minima”
Integration: “Logarithmic and Other Functions Defined by Integrals”
Section 4.5 The Derivative in Graphing and Applications: “Applied Maximum and Minimum Problems”
Section 4.2 The Derivative in Graphing and Applications- “Analysis of Functions II: Relative Extrema; Graphing Polynomials”
Section 8.3 Slope Fields; Euler’s Method.  Calculus,10/E by Howard Anton, Irl Bivens, and Stephen Davis Copyright © 2009 by John Wiley & Sons, Inc. All.
Infinite Series: “The Comparison, Ratio, and Root Tests”
Calculus, 8/E by Howard Anton, Irl Bivens, and Stephen Davis Copyright © 2005 by John Wiley & Sons, Inc. All rights reserved. Definition (p. 626)
Section 5.2 – Properties of Rational Functions
ACT Class Openers:
Section 9.2 Infinite Series: “Monotone Sequences”.
Section 4.1 The Derivative in Graphing and Applications- “Analysis of Functions I: Increase, Decrease, and Concavity”
“Limits and Continuity”: Continuity
Calculus, 9/E by Howard Anton, Irl Bivens, and Stephen Davis Copyright © 2009 by John Wiley & Sons, Inc. All rights reserved. Major theorems, figures,
Section 5.3 Integration: “Integration by Substitution”
Calculus, 8/E by Howard Anton, Irl Bivens, and Stephen Davis Copyright © 2005 by John Wiley & Sons, Inc. All rights reserved. The Tangent Line Problem.
“Limits and Continuity”:.  Calculus,10/E by Howard Anton, Irl Bivens, and Stephen Davis Copyright © 2009 by John Wiley & Sons, Inc. All rights reserved.
Calculus, 9/E by Howard Anton, Irl Bivens, and Stephen Davis Copyright © 2009 by John Wiley & Sons, Inc. All rights reserved. MCS121 Calculus I Section.
Calculus, 9/E by Howard Anton, Irl Bivens, and Stephen Davis Copyright © 2009 by John Wiley & Sons, Inc. All rights reserved. MCS121 Calculus I Section.
“Before Calculus” Functions.  Calculus,10/E by Howard Anton, Irl Bivens, and Stephen Davis Copyright © 2009 by John Wiley & Sons, Inc. All rights reserved.
Calculus, 8/E by Howard Anton, Irl Bivens, and Stephen Davis Copyright © 2005 by John Wiley & Sons, Inc. All rights reserved. 2.5 CONTINUITY Intuitively,
Section 6.5 Area of a Surface of Revolution. All graphics are attributed to:  Calculus,10/E by Howard Anton, Irl Bivens, and Stephen Davis Copyright.
Topics in Differentiation: “L’Hopital’s Rule; Indeterminate Forms”
Section 5.6 Integration: “The Fundamental Theorem of Calculus”
Calculus, 9/E by Howard Anton, Irl Bivens, and Stephen Davis Copyright © 2009 by John Wiley & Sons, Inc. All rights reserved. Major theorems, figures,
Integration: “Rectilinear Motion Revisited Using Integration”
Section 9.4 Infinite Series: “Convergence Tests”.
Section 5.2 Properties of Rational Functions
1 What you will learn 1. How to graph a rational function based on the parent graph. 2. How to find the horizontal, vertical and slant asymptotes for a.
“Limits and Continuity”: Limits (An Intuitive Approach)
Section 9.7 Infinite Series: “Maclaurin and Taylor Polynomials”
Section 5.5 Integration: “The Definite Integral”.
 Calculus,10/E by Howard Anton, Irl Bivens, and Stephen Davis Copyright © 2009 by John Wiley & Sons, Inc. All rights reserved.
Section 8.2 Separation of Variables.  Calculus,10/E by Howard Anton, Irl Bivens, and Stephen Davis Copyright © 2009 by John Wiley & Sons, Inc. All rights.
Section 5.2 Integration: “The Indefinite Integral”
Calculus, 8/E by Howard Anton, Irl Bivens, and Stephen Davis Copyright © 2005 by John Wiley & Sons, Inc. All rights reserved (p. 443) First Area.
Topics in Differentiation: “Derivative of Logarithmic Functions”
Section 3.5 Summary of Curve Sketching. THINGS TO CONSIDER BEFORE SKETCHING A CURVE Domain Intercepts Symmetry - even, odd, periodic. Asymptotes - vertical,
Calculus, 9/E by Howard Anton, Irl Bivens, and Stephen Davis Copyright © 2009 by John Wiley & Sons, Inc. All rights reserved. MCS 122 Chapter 5 Review.
Topics in Differentiation: “Implicit Differentiation”
Section 4.6 The Derivative in Graphing and Applications: “Rectilinear Motion”
Topics in Differentiation: “Derivatives of Exponential Functions”
Section 2.6 Rational Functions and their Graphs. Definition A rational function is in the form where P(x) and Q(x) are polynomials and Q(x) is not equal.
1 Warm-up Solve the following rational equation.
Calculus Section 2.5 Find infinite limits of functions Given the function f(x) = Find =  Note: The line x = 0 is a vertical asymptote.
“Limits and Continuity”: Limits at Infinity; End Behavior of a Function.
Section 9.3 Infinite Series. All graphics are attributed to:  Calculus,10/E by Howard Anton, Irl Bivens, and Stephen Davis Copyright © 2009 by John Wiley.
Calculus, 9/E by Howard Anton, Irl Bivens, and Stephen Davis Copyright © 2009 by John Wiley & Sons, Inc. All rights reserved. Major theorems, figures,
Calculus, 9/E by Howard Anton, Irl Bivens, and Stephen Davis Copyright © 2009 by John Wiley & Sons, Inc. All rights reserved. Major theorems, figures,
Calculus, 9/E by Howard Anton, Irl Bivens, and Stephen Davis Copyright © 2009 by John Wiley & Sons, Inc. All rights reserved. MCS121 Calculus I Section.
Topics in Differentiation: “Related Rates”. All graphics are attributed to:  Calculus,10/E by Howard Anton, Irl Bivens, and Stephen Davis Copyright ©
Lesson 21 Finding holes and asymptotes Lesson 21 February 21, 2013.
Calculus Section 2.5 Find infinite limits of functions Given the function f(x) = Find =  Note: The line x = 0 is a vertical asymptote.
Graph Sketching: Asymptotes and Rational Functions
Section 1.6 “Limits and Continuity”:
Horizontal Asymptotes
Summary Curve Sketching
Integration: “Evaluating Definite Integrals by Substitution”
Slope Fields; Euler’s Method
The Derivative: “Introduction to Techniques of Differentiation”
“Limits and Continuity”: Computing Limits
4.5 An Algorithm for Curve Sketching
Section 5.2 – Properties of Rational Functions
The Derivative: “Derivatives of Trigonometric Functions”
5-Minute Check Lesson 3-7.
The Derivative: “The Chain Rule”
Properties of Rational Functions
Properties of Rational Functions The Graph of a Rational Function
Presentation transcript:

Section 4.3 The Derivative in Graphing and Applications- “Analysis of Functions III: Rational Functions, Cusps, and Vertical Tangents”

All graphics are attributed to: Calculus,10/E by Howard Anton, Irl Bivens, and Stephen Davis Copyright © 2009 by John Wiley & Sons, Inc. All rights reserved.

Introduction In this section we will discuss procedures for graphing rational functions and other kinds of curves. In many problems, the “properties of interest” in the graph of a function are: Some of these properties may not be relevant in certain cases; for example, polynomials do not have asymptotes. symmetries x-intercepts relative extrema intervals of increasing and decreasing asymptotes periodicity y-intercepts concavity inflection points end behavior

Graphing Rational Functions Recall that a rational function is a function in the form f(x) = P(x)/Q(x) which is the ratio of polynomials P(x) and Q(x). Before graphing, check to make sure whether or not P(x) and Q(x) have any common factors. If they do, there will be holes in the graph. After that, you will be looking at many of the properties listed on the previous slide. You will find more specific instructions on the next slide.

Example – Steps 1-3

Example continued – Steps 4-7

Example with Oblique or Curvilinear Asymptotes There are examples on the bottom half of page 258 where the rational functions have a higher degree polynomial in the numerator than in the denominator. These result in other kinds of asymptotes, such as slant (oblique) asymptotes or curvilinear asymptotes. We will not do these this year.

Graphs with Vertical Tangents and Cusps We commonly find points in our graphs where there is a vertical tangent line, therefore, the function is not differentiable at those values of x. There are four examples of this occurring on the next slide. In the first two graphs, a&b, there is an inflection point with the vertical tangent line. In the second two graphs, c&d, there is a cusp (where the limit approaching from the left does not equal the limit approaching from the right).

Example with Vertical Tangents Follow the same steps as the previous example, but don’t forget to look for vertical tangents. Steps 1-3, 5

Example with Vertical Tangents con’t Step 6 (this is where the extra work comes in)

Example with Vertical Tangents con’t Steps 4 & 7

Golfing with My Mom in Phoenix