However, some functions are defined implicitly. Some examples of implicit functions are: x 2 + y 2 = 25 x 3 + y 3 = 6xy.

Slides:



Advertisements
Similar presentations
3.7 Implicit Differentiation
Advertisements

2.5 Implicit Differentiation Niagara Falls, NY & Canada Photo by Vickie Kelly, 2003.
Implicit Differentiation
Fun with Differentiation!
3 DERIVATIVES. In this section, we will learn: How functions are defined implicitly. 3.6 Implicit Differentiation DERIVATIVES.
2.5 The Chain Rule If f and g are both differentiable and F is the composite function defined by F(x)=f(g(x)), then F is differentiable and F′ is given.
2.5 Implicit Differentiation. Implicit and Explicit Functions Explicit FunctionImplicit Function But what if you have a function like this…. To differentiate:
Section 2.5 – Implicit Differentiation
Chapter 4 Additional Derivative Topics Section 5 Implicit Differentiation.
3 DERIVATIVES.
The exponential function occurs very frequently in mathematical models of nature and society.
3.6 Derivatives of Logarithmic Functions 1Section 3.6 Derivatives of Log Functions.
 The functions that we have met so far can be described by expressing one variable explicitly in terms of another variable.  For example,, or y = x sin.
Aim: What Is Implicit Differentiation and How Does It Work?
3 DIFFERENTIATION RULES. The functions that we have met so far can be described by expressing one variable explicitly in terms of another variable. 
3 DERIVATIVES. The functions that we have met so far can be described by expressing one variable explicitly in terms of another variable.  For example,,
Implicit Differentiation
Implicit Differentiation 3.6. Implicit Differentiation So far, all the equations and functions we looked at were all stated explicitly in terms of one.
Quiz corrections due Friday. 2.5 Implicit Differentiation Niagara Falls, NY & Canada Greg Kelly, Hanford High School, Richland, WashingtonPhoto by Vickie.
Copyright © Cengage Learning. All rights reserved. 3 Derivatives.
Section 2.5 – Implicit Differentiation. Explicit Equations The functions that we have differentiated and handled so far can be described by expressing.
3.7 Implicit Differentiation Niagara Falls, NY & Canada Greg Kelly, Hanford High School, Richland, WashingtonPhoto by Vickie Kelly, 2003.
Implicit Differentiation Niagara Falls, NY & Canada Greg Kelly, Hanford High School, Richland, WashingtonPhoto by Vickie Kelly, 2003.
Example: Sec 3.7: Implicit Differentiation. Example: In some cases it is possible to solve such an equation for as an explicit function In many cases.
3 DERIVATIVES. The functions that we have met so far can be described by expressing one variable explicitly in terms of another variable.  For example,,
1 Implicit Differentiation. 2 Introduction Consider an equation involving both x and y: This equation implicitly defines a function in x It could be defined.
2.5 Implicit Differentiation
Calculus: IMPLICIT DIFFERENTIATION Section 4.5. Explicit vs. Implicit y is written explicitly as a function of x when y is isolated on one side of the.
15. Implicit Differentiation Objectives: Refs: B&Z Learn some new techniques 2.Examples 3.An application.
In this section, we will investigate a new technique for finding derivatives of curves that are not necessarily functions.
3.6 Derivatives of Logarithmic Functions In this section, we: use implicit differentiation to find the derivatives of the logarithmic functions and, in.
Lesson: Derivative Techniques - 4  Objective – Implicit Differentiation.
3.6 - Implicit Differentiation (page ) b We have been differentiating functions that are expressed in the form y=f(x). b An equation in this form.
Slide 3- 1 Quick Quiz Sections 3.4 – Implicit Differentiation.
Section 3.5 Implicit Differentiation 1. Example If f(x) = (x 7 + 3x 5 – 2x 2 ) 10, determine f ’(x). Now write the answer above only in terms of y if.
Chapter 4 Additional Derivative Topics Section 5 Implicit Differentiation.
Lesson: ____ Section: 3.7  y is an “explicitly defined” function of x.  y is an “implicit” function of x  “The output is …”
3.8 Implicit Differentiation Niagara Falls, NY & Canada Photo by Vickie Kelly, 2003.
Calculus BC 2014 Implicit Differentiation. Implicit Differentiation Equation for a line: Explicit Form Implicit Form Differentiate the Explicit Differentiation.
7.2* Natural Logarithmic Function In this section, we will learn about: The natural logarithmic function and its derivatives. INVERSE FUNCTIONS.
© 2010 Pearson Education Inc.Goldstein/Schneider/Lay/Asmar, CALCULUS AND ITS APPLICATIONS, 12e– Slide 1 of 33 Chapter 3 Techniques of Differentiation.
René Descartes 1596 – 1650 René Descartes 1596 – 1650 René Descartes was a French philosopher whose work, La géométrie, includes his application of algebra.
Lesson 3-7: Implicit Differentiation AP Calculus Mrs. Mongold.
3.5 Implicit Differentiation
2.5 The Chain Rule If f and g are both differentiable and F is the composite function defined by F(x)=f(g(x)), then F is differentiable and F′ is given.
Implicit Differentiation
4.2 Implicit Differentiation
Implicit Differentiation
Copyright © Cengage Learning. All rights reserved.
2.6 Implicit Differentiation
Chapter 3 Techniques of Differentiation
3 DERIVATIVES.
Sec 3.5: IMPLICIT DIFFERENTIATION
3.7 Implicit Differentiation
Implicit Differentiation
Implicit Differentiation
Implicit Differentiation
Implicit Differentiation
Unit 3 Lesson 5: Implicit Differentiation
Implicit Differentiation
Copyright © Cengage Learning. All rights reserved.
2.5 Implicit Differentiation
Tutorial 4 Techniques of Differentiation
3.7 Implicit Differentiation
Copyright © Cengage Learning. All rights reserved.
Copyright © Cengage Learning. All rights reserved.
Copyright © Cengage Learning. All rights reserved.
Presentation transcript:

However, some functions are defined implicitly. Some examples of implicit functions are: x 2 + y 2 = 25 x 3 + y 3 = 6xy

In some cases, it is possible to solve such an equation for y as an explicit function (or several functions) of x.

Nonetheless, x 3 + y 3 = 6xy is the equation of a curve called the folium of Descartes shown here and it implicitly defines y as several functions of x. It’s not easy to solve equation x 3 + y 3 = 6xy for y explicitly as a function of x by hand. A computer algebra system has no trouble. However, the expressions it obtains are very complicated Fortunately, we don’t need to solve an equation for y in terms of x to find the derivative of y. Instead, we can use the method of implicit differentiation. This consists of differentiating both sides of the equation with respect to x and then solving the resulting equation for y’. In the examples, it is always assumed that the given equation determines y implicitly as a differentiable function of x so that the method of implicit differentiation can be applied.

a. Differentiate both sides of the equation x 2 + y 2 = 25: example: At the point (3, 4) we have x = 3 and y = 4. Thus, an equation of the tangent to the circle at (3, 4) is: y – 4 = – ¾(x – 3) or 3x + 4y = 25.

a. Find y’ if x 3 + y 3 = 6xy. b. Find the tangent to the folium of Descartes x 3 + y 3 = 6xy at the point (3, 3). c. At what points in the first quadrant is the tangent line horizontal? Differentiating both sides of x 3 + y 3 = 6xy with respect to x, regarding y as a function of x, and using the Chain Rule on y 3 and the Product Rule on 6xy, we get: 3x 2 + 3y 2 y’ = 6xy’ + 6y or x 2 + y 2 y’ = 2xy’ + 2y Now, we solve for y’: example: So, an equation of the tangent to the folium at (3, 3) is: y – 3 = – 1(x – 3) or x + y = 6. When x = y = 3, y’ = – 1

The tangent line is horizontal if y’ = 0. Using the expression for y’ from (a), we see that y’ = 0 when 2y – x 2 = 0 (provided that y 2 – 2x ≠ 0). Substituting y = ½x 2 in the equation of the curve, we get x 3 + (½x 2 ) 3 = 6x(½x 2 ) which simplifies to x 6 = 16x 3. Since x ≠ 0 in the first quadrant, we have x 3 = 16. If x = 16 1/3 = 2 4/3, then y = ½(2 8/3 ) = 2 5/3. Thus, the tangent is horizontal at (0, 0) and at (2 4/3, 2 5/3 ), which is approximately (2.5198, ).

This can’t be solved for y.

Find the equations of the lines tangent and normal to the curve at Note product rule. at We need the slope. Since we can’t solve for y, we use implicit differentiation to solve for y’. example:

tangent:normal:

Higher Order Derivatives Find if Substitute back into the equation.

Find y” if x 4 + y 4 = 16. Differentiating the equation implicitly with respect to x, we get 4x 3 + 4y 3 y’ = 0. example: To find y’’, we differentiate this expression for y’ using the Quotient Rule and remembering that y is a function of x:

However, the values of x and y must satisfy the original equation x 4 + y 4 = 16. So, the answer looks quite simple: