Chapter 12.1 Common Core – G.C.2 Identify and describe relationships among inscribed angels, radii, and chords…the radius of a circle is perpendicular.

Slides:



Advertisements
Similar presentations
Lesson 10.1 Parts of a Circle Today, we are going to…
Advertisements

Definitions A circle is the set of all points in a plane that are equidistant from a given point called the center of the circle. Radius – the distance.
Tangents, Arcs, and Chords
The given distance is called the radius
Tangents Chapter 10 Section 5. Recall What is a Circle –set of all points in a plane that are equidistant from a given point called a center of the circle.
CIRCLES 2 Moody Mathematics.
Definitions A circle is the set of all points in a plane that are equidistant from a given point called the center of the circle. Radius – the distance.
Circle. Circle Circle Tangent Theorem 11-1 If a line is tangent to a circle, then the line is perpendicular to the radius drawn to the point of.
Chapter 9 Circles Define a circle and a sphere.
Tangents to Circles Pg 595. Circle the set of all points equidistant from a given point ▫Center Congruent Circles ▫have the same radius “Circle P” or.
10.1 Tangents to Circles Geometry.
Angles in a Circle Keystone Geometry
Other Angle Relationships
By Mark Hatem and Maddie Hines
Section 10 – 1 Use Properties of Tangents. Vocabulary Circle – A set of all points that are equidistant from a given point called the center of the circle.
CIRCLES Chapter 10.
Circles Chapter 10.
Circles.
Unit 7. Unit 7: Properties of Two Dimensional Figures.
Ch 11 mini Unit. LearningTarget 11-1 Tangents I can use tangents to a circle to find missing values in figures.
6.1 Use Properties of Tangents
Tangents to Circles (with Circle Review)
10.1 Tangents to Circles Circle: the set of all points in a plane that are equidistant from a given point. Center: the point from which all points of.
Chapter 10: Circles.
Chapter 10 Properties of Circles
Bell work What is a circle?. Bell work Answer A circle is a set of all points in a plane that are equidistant from a given point, called the center of.
M—06/01/09—HW #75: Pg : 1-20, skip 9, 16. Pg : 16—38 even, 39— 45 odd 2) C4) B6) C8) A10) 512) EF = 40, FG = 50, EH = ) (3\2, 2); (5\2)18)
Circle Set of all points equidistant from a given point called the center. The man is the center of the circle created by the shark.
Chapter 9 Kiara, Chelsea, Angus. 9.1 Basic Terms of the Circle Circle Set of points in a plane at a given distance (radius) from a given point (center)
Circle Is the set of all points equidistant from a given point called the center. The man is the center of the circle created by the shark.
10.1 – Tangents to Circles. A circle is a set of points in a plane at a given distance from a given point in the plane. The given point is a center. CENTER.
Chapter 10 Properties of Circles.
Review May 16, Right Triangles The altitude to the hypotenuse of a right triangle divides the triangle into two triangles that are similar to the.
Circles Chapter 9. Tangent Lines (9-1) A tangent to a circle is a line in the plane of the circle that intersects the circle in exactly one point. The.
6.3 – 6.4 Properties of Chords and Inscribed Angles.
Circles Chapter 12.
Circle GEOMETRY Radius (or Radii for plural) The segment joining the center of a circle to a point on the circle. Example: OA.
Circle Properties - Ch 6 Chord Central Angles Conjecture If two chords in a circle are congruent, then they determine two central angles that are…....congruent.
Section 10.1 Theorem 74- If a radius is perpendicular to a chord, then it bisects the chord Theorem 74- If a radius is perpendicular to a chord, then it.
Radius diameter secant tangent chord Circle: set of all points in a plane equidistant from a fixed point called the center. Circle 4.1.
1 1/3/13 Unit 4 Polygons and Circles Angle Formulas.
Geometry Chapter 9 Review. Secant A line that contains a chord of a circle. SECANT.P.P.
Lesson 8-1: Circle Terminology
Circles Vocabulary Unit 7 OBJECTIVES: Degree & linear measure of arcs Measures of angles in circles Properties of chords, tangents, & secants.
Exploring Circles. Definitions Notation: if the center is P then the circle can be denoted by סּP The points inside the circle form the circle's interior.
A radius drawn to a tangent at the point of tangency is perpendicular to the tangent. l C T Line l is tangent to Circle C at point T. CT  l at T.
Learning About Circles Circle n An infinite set of coplanar points that are an equal distance from a given point. O M M.
Circles Modified by Lisa Palen. Definitions Circle The CENTER of the circle is the point that is the same distance to every point on the circle. The distance.
Chapter 10 Circles – 5 10 – 6.
 A circle is defined by it’s center and all points equally distant from that center.  You name a circle according to it’s center point.  The radius.
PROPERTIES OF CIRCLES Chapter – Use Properties of Tangents Circle Set of all points in a plan that are equidistant from a given point called.
C HAPTER Circles and Circumference 10.2 Angles and Arcs 10.3 Arcs and Chords 10.4 Inscribed Angles 10.5 Tangents 10.6 Secants, Tangents, and Angle.
10.1 Tangents to Circles. Some definitions you need Circle – set of all points in a plane that are equidistant from a given point called a center of the.
Circle Unit Part 4 Angles
Chapter 9 Circles Define a circle and a sphere.
Objectives: To use the relationship between a radius and a tangent To use the relationship between two tangents from one point.
Chapter 7 Circles. Circle – the set of all points in a plane at a given distance from a given point in the plane. Named by the center. Radius – a segment.
Ch 10 goals and common core standards Ms. Helgeson
Thm Summary
Circles Chapter 10.
Circles.
Chapter 10.1 Notes Circles – is the set of all pts in a plane that are equidistant from a given pt, called the center.
Angles in Circles.
Section 6.2 More Angle Measures in a Circle
Unit 3 Circles.
Section 6.2 More Angle Measures in a Circle
CIRCLES OBJECTIVE: Learn the basic terminology for circles and lines and segments associated with circles.
Angles in Circles.
Y. Davis Geometry Notes Chapter 10.
Copyright © Cengage Learning. All rights reserved.
Presentation transcript:

Chapter 12.1 Common Core – G.C.2 Identify and describe relationships among inscribed angels, radii, and chords…the radius of a circle is perpendicular to the tangent where the radius intersects the circle. Objective – To use properties of a tangent to a circle.

Chapter 12.1 Notes Circles – is the set of all pts in a plane that are equidistant from a given pt, called the center

Internally and Externally Tangents The Circles are internally and externally tangent. The Lines are

Thm – If a line is tangent to a circle, it is ⊥ to the radius drawn to the point of tangency If then Thm – In a plane, if a line is ⊥ to a radius of a circle at its endpts. on the circle, then the line is tangent to the circle.

Thm – If 2 segments from the same exterior pt are tangent to a circle, then they are ≌. If then

Chapter 12.2 Notes Common Core – G.C.2 Identify and describe relationships among inscribed angles, radii, and chords. Objectives – To use congruent chords, arcs, and central angles. To use perpendicular bisectors to chords.

Chapter 12.2 Notes Central Angle – an angle made with the center of the circle. Minor Arc – is a central angle less than 180° Semicircle – is a central angle that is exactly 180° Major Arc – is a central angle more than 180°

Arc Addition Postulate m ABC = m AB + m BC Thm – AB ≌ BC AB ≌ BC Thm – DE ≌ EF, DG ≌ GF

Thm – JK is a diameter of the circle Thm – AB ≌ CD EF ≌ EG

Chapter 12.3 Notes Common Core – G.C.2, G.C.3, G.C.4 Identify and describe relationships among inscribed angles, radii, and chords. Prove properties of angles for a quadrilateral inscribed in a circle. Objectives – To find the measure of an inscribed angle. To find the measure of an angle formed by a tangent and a chord.

Chapter 12.3 Notes Inscribed Angles – is an angle whose vertex is on a circle and whose sides contain chords of the circle. Inscribed angle is half the measure of the intercepted arc.

Thm – If 2 inscribed angles of a circle intercept the same arc, then the angles are congruent. Thm – If a rt is inscribed in a circle, then the hypotenuse is a diameter of the circle and vise versa.

Thm – A Quadrilateral can be inscribed in a circle if and only if its opposite angles are supplementary The Quad. is inscribed in the circle and the circle is circumscribed about the Quad.

Thm – If a tangent and an chord intersect at a pt Thm – If a tangent and an chord intersect at a pt. on a circle, then the measure of each angle formed is ½ the measure of its intercepted arc.

Chapter 12.4 Common Core – G.C.2 Identify and describe relationships among inscribed angles, radii, and chords. Objectives – To find measures of angles formed by chords, secants, and tangents. To find the lengths of segments associated with circles.

Chapter 12.4 Thm – If 2 chords intersect in the interior of a circle, then the measure of each angle is ½ the sum of the measures of the arcs intercepted by the angle and its vertical angles.

Thm – If a tangent and a secant, 2 tangents, or 2 secants intersect in the exterior of a circle, then the measure of the angle formed is ½ the difference of the measures of the intercepted arcs.

Thm – If 2 chords intersect in the interior of a circle, then the product of the lengths of the segments of one chord is equal to the product of the lengths of the segments of the other chord. Thm – If 2 secant segments share the same endpt outside a circle, then the product of the length of one secant segment and the length of its external segment equals the product of the length of the other secant segment and the length of its external segment

Thm – If a secant segment and a tangent segment share an endpt Thm – If a secant segment and a tangent segment share an endpt. Outside a circle, then the product of the length of the secant segment and the length of its external segment equals the square of the length of the tangent segment.

Chapter 12.5 Notes Common Core – G.GPE.1 Derive the equation of a circle given center and radius using the Pythagorean Theorem. Objectives – To write the equation of a circle. To find the center and radius of a circle.

Chapter 12.5 Notes Standard equation of a circle (x – h)2 + (y – k)2 = r2 Center (h,k) Radius is r

Chapter 12.6 Notes Common Core – G.GMD.4 Identify three-dimensional objects generated by rotations of two-dimensional objects. Objectives – To draw and describe a locus.

Chapter 12.6 Notes Locus – is the set of all points in a plane that satisfy a given condition or a set of given conditions. Finding a Locus Draw any figures that are given in the statement of the problem. Locate several pts. that satisfy the given condition Continue drawing pts. Until you can recognize the pattern. Draw the locus and describe it in words.