Geometry Mrs. Spitz Spring 2005

Slides:



Advertisements
Similar presentations
Agenda 1) Bell Work 2) Outcomes 3) Trig Ratio Review
Advertisements

Bell Ringer.
Trigonometric Ratios Warm Up Lesson Presentation Lesson Quiz 11.4/5
Geometry 9.5 Trigonometric Ratios May 5, 2015Geometry 9.5 Trigonometric Ratios w/o Calculator2 Goals I can find the sine, cosine, and tangent of an acute.
ANGLE ANGULAR MEASUREMENT
Warm Up Find the unknown length for each right triangle with legs a and b and hypotenuse c. NO DECIMALS 5. b = 12, c =13 6. a = 3, b = 3 a = 5.
6/10/2015 8:06 AM13.1 Right Triangle Trigonometry1 Right Triangle Trigonometry Section 13.1.
9.6 Solving Right Triangles Geometry Mrs. Spitz Spring 2005.
Objective: To use the sine, cosine, and tangent ratios to determine missing side lengths in a right triangle. Right Triangle Trigonometry Sections 9.1.
Trigonometry Chapters Theorem.
Write each fraction as a decimal rounded to the nearest hundredth.
Trigonometry-5 Examples and Problems. Trigonometry Working with Greek letters to show angles in right angled triangles. Exercises.
60º 5 ? 45º 8 ? Recall: How do we find “?”. 65º 5 ? What about this one?
Introduction to Trigonometry
goal: know how to set up different trig ratios
TRIGOMOMETRY RIGHT R I A N G L E.
Warm Up for Section 1.2 Simplify: (1). (2). (3). There are 10 boys and 12 girls in a Math 2 class. Write the ratio of the number of girls to the number.
EXAMPLE 1 Finding Trigonometric Ratios For PQR, write the sine, cosine, and tangent ratios for P. SOLUTION For P, the length of the opposite side is 5.
 In a right triangle, the square of the length of the hypotenuse is equal to the sum of the squares of the lengths of the legs  a 2 + b 2 = c 2 a, leg.
Do Now – You Need a Calculator!!
Lesson 9.5 Trigonometric Ratio
Geometry One is always a long way from solving a problem until one actually has the answer. Stephen Hawking Today: 9.5 Instruction Practice.
 A trigonometric ratio is a ratio of the lengths of 2 sides of a right triangle.  You will learn to use trigonometric ratios of a right triangle to determine.
Honors Geometry Sections 10.1 & 10.2 Trigonometric ratios
A geometric sequence is found by multiplying the previous number by a given factor, or number. 5, 15, 45, 135,… Set up a proportion to compare the first.
Write each fraction as a decimal rounded to the nearest hundredth.
 Students will recognize and apply the sine & cosine ratios where applicable.  Why? So you can find distances, as seen in EX 39.  Mastery is 80% or.
Warmup: What is wrong with this? 30 ⁰. 8.3 and 8.4 Trigonometric Ratios.
Objective: To use the sine, cosine, and tangent ratios to determine missing side lengths in a right triangle. Right Triangle Trigonometry Sections 9.1.
SECTION 8.4 TRIGONOMETRY. The word trigonometry comes from two greek terms, trigon, meaning triangle, and metron, meaning measure. a trigonometric ratio.
 Students will analyze and apply the Tangent Ratio for indirect measurement.  Why? So you can find the height of a roller coaster, as seen in Ex 32.
Geometry Section 9.5 Trigonometric ratios. The word “trigonometry” comes from two Greek words which mean ___________________ And that is exactly what.
Geometry One is always a long way from solving a problem until one actually has the answer. Stephen Hawking Today: ACT VOCAB CHECK 9.6 Instruction Practice.
8.5 and 8.6 Trigonometric Ratios
9.5 Trigonometric Ratios Advanced Geometry.
Agenda 1) Bell Work / Homework Check 2) Outcomes 3) Pop Quiz 4) Notes Trig Ratio.
8-2 Trigonometric Ratios Warm Up Lesson Presentation Lesson Quiz
1 Trigonometry Basic Calculations of Angles and Sides of Right Triangles.
Objective: Students will be able to… Use the sine, cosine, and tangent ratios to determine missing side lengths and angle measures in a right triangle.
Learning Objective: To be able to describe the sides of right-angled triangle for use in trigonometry. Setting up ratios Trig in the Calculator.
Introduction to Trigonometry Right Triangle Trigonometry.
Agenda/Objectives Check/go over homework Show the tan -1, cos -1, sin -1 buttons Notes on 8.7 Worksheet problems Prepare for CORE ASSESSMENT.
9.5: Trigonometric Ratios. Vocabulary Trigonometric Ratio: the ratio of the lengths of two sides of a right triangle Angle of elevation: the angle that.
Right Triangle Trigonometry
Holt McDougal Geometry 8-2 Trigonometric Ratios Warm Up Write each fraction as a decimal rounded to the nearest hundredth Solve each equation. 3.
Review – Right Triangle Trigonometry. Objectives Find trigonometric ratios using right triangles. Use trigonometric ratios to find angle measures in right.
A Quick Review ► We already know two methods for calculating unknown sides in triangles. ► We are now going to learn a 3 rd, that will also allow us to.
Trigonometric Functions of Angles 6. Trigonometry of Right Triangles 6.2.
9.1 Similar Right Triangles
How to use sine, cosine, and tangent ratios to determine side lengths in triangles. Chapter GeometryStandard/Goal: 2.2, 4.1.
Section 9.5: Trigonometric Ratios. trigonometric ratio – a ratio of the lengths of two sides of a right triangle. The three basic trigonometric ratios.
9.5 Trigonometric Ratios Geometry.
Topic 8 Goals and common core standards Ms. Helgeson
Geometry 9.5 Trigonometric Ratios.
Geometry 9.5 Tangent Ratio
Special Right Triangles
Activate Prior Knowledge CFU
Geometry 9.5 Trigonometric Ratios.
CHAPTER 10 Geometry.
5-Minute Check.
9-5 Trigonometric Ratios
Geometry Mrs. Spitz Spring 2005
Objectives Find the sine, cosine, and tangent of an acute angle.
Trigonometric Ratios Warm Up Lesson Presentation Lesson Quiz 8-3
9.5 Trigonometric Ratios.
5-Minute checks YZ.
Objectives Find the sine, cosine, and tangent of an acute angle.
Obj: Use tangent to find the length of a side of a right triangle
Unit III Trigonometric Ratios Holt Geometry.
Presentation transcript:

Geometry Mrs. Spitz Spring 2005 9.5 Trigonometric Ratios Geometry Mrs. Spitz Spring 2005

Objectives/Assignment Find the since, the cosine, and the tangent of an acute triangle. Use trionometric ratios to solve real-life problems, such as estimating the height of a tree or flagpole. To solve real-life problems such as in finding the height of a water slide. Assignment: pp. 562-563 #3-38 all Due TODAY– 9.4 Quiz next time we meet

Finding Trig Ratios A trigonometric ratio is a ratio of the lengths of two sides of a right triangle. The word trigonometry is derived from the ancient Greek language and means measurement of triangles. The three basic trigonometric ratios are sine, cosine, and tangent, which are abbreviated as sin, cos, and tan respectively.

Trigonometric Ratios Let ∆ABC be a right triangle. The since, the cosine, and the tangent of the acute angle A are defined as follows. Side adjacent to A b cos A = = hypotenuse c Side opposite A a sin A = = hypotenuse c Side opposite A a tan A = = Side adjacent to A b

Note: The value of a trigonometric ratio depends only on the measure of the acute angle, not on the particular right triangle that is used to compute the value.

Ex. 1: Finding Trig Ratios Compare the sine, the cosine, and the tangent ratios for A in each triangle beside. By the SSS Similarity Theorem, the triangles are similar. Their corresponding sides are in proportion which implies that the trigonometric ratios for A in each triangle are the same.

Ex. 1: Finding Trig Ratios Large Small opposite 8 sin A = ≈ 0.4706 4 ≈ 0.4706 hypotenuse 17 8.5 adjacent 7.5 cosA = 15 ≈ 0.8824 ≈ 0.8824 hypotenuse 8.5 17 opposite tanA = 8 4 ≈ 0.5333 ≈ 0.5333 adjacent 15 7.5 Trig ratios are often expressed as decimal approximations.

Ex. 2: Finding Trig Ratios opposite 5 sin S = ≈ 0.3846 hypotenuse 13 adjacent cosS = 12 ≈ 0.9231 hypotenuse 13 opposite tanS = 5 ≈ 0.4167 adjacent 12

Ex. 2: Finding Trig Ratios—Find the sine, the cosine, and the tangent of the indicated angle. opposite 12 sin S = ≈ 0.9231 hypotenuse 13 adjacent cosS = 5 ≈ 0.3846 hypotenuse 13 opposite tanS = 12 ≈ 2.4 adjacent 5

Ex. 3: Finding Trig Ratios—Find the sine, the cosine, and the tangent of 45 opposite 1 √2 sin 45= = ≈ 0.7071 hypotenuse √2 2 adjacent 1 √2 cos 45= = ≈ 0.7071 hypotenuse √2 2 opposite 1 tan 45= adjacent = 1 1 Begin by sketching a 45-45-90 triangle. Because all such triangles are similar, you can make calculations simple by choosing 1 as the length of each leg. From Theorem 9.8 on page 551, it follows that the length of the hypotenuse is √2. √2 45

Ex. 4: Finding Trig Ratios—Find the sine, the cosine, and the tangent of 30 opposite 1 sin 30= = 0.5 hypotenuse 2 adjacent √3 cos 30= ≈ 0.8660 hypotenuse 2 opposite 1 √3 tan 30= = adjacent ≈ 0.5774 √3 3 Begin by sketching a 30-60-90 triangle. To make the calculations simple, you can choose 1 as the length of the shorter leg. From Theorem 9.9, on page 551, it follows that the length of the longer leg is √3 and the length of the hypotenuse is 2. 30 √3

Ex: 5 Using a Calculator You can use a calculator to approximate the sine, cosine, and the tangent of 74. Make sure that your calculator is in degree mode. The table shows some sample keystroke sequences accepted by most calculators.

Sample keystrokes Sample keystroke sequences Sample calculator display Rounded Approximation 74 0.961262695 0.9613 0.275637355 0.2756 3.487414444 3.4874 sin sin ENTER 74 COS COS ENTER 74 TAN TAN ENTER

Notes: If you look back at Examples 1-5, you will notice that the sine or the cosine of an acute triangles is always less than 1. The reason is that these trigonometric ratios involve the ratio of a leg of a right triangle to the hypotenuse. The length of a leg or a right triangle is always less than the length of its hypotenuse, so the ratio of these lengths is always less than one.

Trigonometric Identities A trigonometric identity is an equation involving trigonometric ratios that is true for all acute triangles. You are asked to prove the following identities in Exercises 47 and 52. (sin A)2 + (cos A)2 = 1 sin A tan A = cos A

Using Trigonometric Ratios in Real-life Suppose you stand and look up at a point in the distance. Maybe you are looking up at the top of a tree as in Example 6. The angle that your line of sight makes with a line drawn horizontally is called angle of elevation.

Ex. 6: Indirect Measurement You are measuring the height of a Sitka spruce tree in Alaska. You stand 45 feet from the base of the tree. You measure the angle of elevation from a point on the ground to the top of the top of the tree to be 59°. To estimate the height of the tree, you can write a trigonometric ratio that involves the height h and the known length of 45 feet.

The math The tree is about 76 feet tall. Write the ratio tan 59° = opposite adjacent Write the ratio tan 59° = h 45 Substitute values Multiply each side by 45 45 tan 59° = h Use a calculator or table to find tan 59° 45 (1.6643) ≈ h Simplify 75.9 ≈ h The tree is about 76 feet tall.

Ex. 7: Estimating Distance Escalators. The escalator at the Wilshire/Vermont Metro Rail Station in Los Angeles rises 76 feet at a 30° angle. To find the distance d a person travels on the escalator stairs, you can write a trigonometric ratio that involves the hypotenuse and the known leg of 76 feet. 30°

Now the math sin 30° = opposite hypotenuse 30° Write the ratio for sine of 30° sin 30° = 76 d Substitute values. d sin 30° = 76 Multiply each side by d. sin 30° 76 d = Divide each side by sin 30° 0.5 76 d = Substitute 0.5 for sin 30° d = 152 Simplify A person travels 152 feet on the escalator stairs.

Reminders: After this section, you have a quiz on Thursday or Friday. Chapter 9 exam will take place before you leave for spring break . . . Take it before you go on break. Binder check before spring break. These are your new grades for the last quarter of the year. Study and don’t slack off now.