Geometric Sequences.

Slides:



Advertisements
Similar presentations
Daily Check Find the first 3 terms of the following sequence:
Advertisements

OBJECTIVE We will find the missing terms in an arithmetic and a geometric sequence by looking for a pattern and using the formula.
Warm up 1. Determine if the sequence is arithmetic. If it is, find the common difference. 35, 32, 29, 26, Given the first term and the common difference.
Warm Up Find the nth term of the sequence 3, 6, 9, 12, … (Hint: what is the pattern?) Find the 11 th term.
Copyright © 2007 Pearson Education, Inc. Slide 8-1 Geometric Sequences  1, 2, 4, 8, 16 … is an example of a geometric sequence with first term 1 and each.
A geometric sequence is a list of terms separated by a constant ratio, the number multiplied by each consecutive term in a geometric sequence. A geometric.
Geometric Sequences Section
Notes Over 11.3 Geometric Sequences
Bellwork:  Determine whether each of the following is Arithmetic (something was added each time), Geometric ( something was multiplied each time), or.
2-3 Geometric Sequences Definitions & Equations
 Find the next three terms in each sequence:  5, 15, 45, 135, _____, _____, _____  0.5, 2, 8, 32, _____, _____, _____  -32, 16, -8, 4, _____, _____,
A sequence is geometric if the ratios of consecutive terms are the same. That means if each term is found by multiplying the preceding term by the same.
Choi Geometric Sequence A sequence like 3, 9, 27, 81,…, where the ratio between consecutive terms is a constant, is called a geometric sequence. In a.
11.4 Geometric Sequences Geometric Sequences and Series geometric sequence If we start with a number, a 1, and repeatedly multiply it by some constant,
Sequences and Series It’s all in Section 9.4a!!!.
Lesson 4-4: Arithmetic and Geometric Sequences
Standard # D Geometric Sequences GeometricSequence What if your pay check started at $100 a week and doubled every week. What would your salary.
What are two types of Sequences?
Find each sum:. 4, 12, 36, 108,... A sequence is geometric if each term is obtained by multiplying the previous term by the same number called the common.
Geometric Sequences as Exponential Functions
Lesson 10-7 Geometric Sequences.
Geometric Sequences.
1 © 2010 Pearson Education, Inc. All rights reserved © 2010 Pearson Education, Inc. All rights reserved Chapter 10 Further Topics in Algebra.
Arithmetic and Geometric Sequences Finding the nth Term 2,4,6,8,10,…
© 2010 Pearson Prentice Hall. All rights reserved. CHAPTER 5 Number Theory and the Real Number System.
Daily Check 1)Find the first 3 terms of the following sequence: 2)Write the formula for the following arithmetic sequence. -2, 1, 4, 7, 10.
Algebra II Honors POD Find the first six terms of the sequence defined as follows: Homework: p odds.
8-6: Geometric Sequences Objectives: 1.To form geometric sequences 2.To use formulas when describing geometric sequences.
9.3 Geometric Sequences and Series. 9.3 Geometric Sequences A sequence is geometric if the ratios of consecutive terms are the same. This common ratio.
11.3 Geometric Sequences & Series. What is a geometric sequence? What is the rule for a geometric sequence? How do you find the nth term given 2 terms?
12.3 – Analyze Geometric Sequences and Series. Geometric Sequence: Ratio of any term to the previous term is constant Common Ratio: Ratio each term is.
ADD To get next term Have a common difference Arithmetic Sequences Geometric Sequences MULTIPLY to get next term Have a common ratio.
+ Lesson 3B: Geometric Sequences + Ex 1: Can you find a pattern and use it to guess the next term? A) 3, 9, 27, … B) 28, 14, 7, 3.5,... C) 1, 4, 9, 16,...
9.3: Geometric Sequences and Series Objectives: Find the n th term and geometric mean Find the sum of n terms ©2002 Roy L. Gover (
May 1, 2012 Arithmetic and Geometric Sequences Warm-up: What is the difference between an arithmetic and geometric sequence? Write an example for each.
Geometric Sequence Sequences and Series. Geometric Sequence A sequence is geometric if the ratios of consecutive terms are the same. 2, 8, 32, 128, 512,...
+ 8.4 – Geometric Sequences. + Geometric Sequences A sequence is a sequence in which each term after the first is found by the previous term by a constant.
Geometric Sequence: each term is found by multiplying the previous term by a constant.
Lesson 11.4 Geometric Sequences. Warm Up ½ A geometric sequence is a sequence in which the ratio of successive terms is the same number, r, called.
Geometric Progression. Objectives The presentation intends to:  teach students how to solve problems related to geometric progressions;  help students.
Bellwork 1) 11, 7, 3, -1,… a) Arithmetic, Geometric, or Neither? b) To get the next term ____________ 1) 128, 64, 32, 16,… a) Arithmetic, Geometric, or.
Section 4-7: Arithmetic Sequences.
Sequences Arithmetic Sequence:
Homework Check.
Geometric Sequences.
Patterns.
Copyright © 2014, 2010, 2007 Pearson Education, Inc.
11.3 Geometric sequences; Geometric Series
Geometric Sequences Part 1.
AKS 67 Analyze Arithmetic & Geometric Sequences
Patterns & Sequences Algebra I, 9/13/17.
Arithmetic & Geometric Sequences
1.7 - Geometric sequences and series, and their
11.3 – Geometric Sequences.
Geometric Sequences Definitions & Equations
11.3 Geometric Sequences.
Geometric Sequences.
Warm Up 1. Find 3f(x) + 2g(x) 2. Find g(x) – f(x) 3. Find g(-2)
10.2 Arithmetic Sequences and Series
Homework Check.
Sequences and Series Geometric sequence..
Geometric Sequences.
Geometric sequences.
Homework Check.
Geometric Sequences A geometric sequence is a list of numbers with a common ratio symbolized as r. This means that you can multiply by the same amount.
Welcome Is the number 27 a term in the sequence represented by the explicit formula an = 4n – 1? Is the number 97 a term in the sequence represented by.
Geometric Sequences and series
Advanced Math Topics Mrs. Mongold
Questions over HW?.
Arithmetic & Geometric Sequences
Presentation transcript:

Geometric Sequences

Definition of a geometric sequence. An geometric sequence is a sequence in which each term after the first is found by multiplying the previous term by a constant called the common ratio, r.

You can name the terms of a geometric sequence using a1, a2, a3, and so on If we define the nth term as an then then previous term is an-1. And by the definition of a geometric sequence an = r(an-1) now solve for r r = an an-1

Example 1. Find the next two terms in the geometric sequence 3, 12, 48, ... First find the common ratio. Let 3 = an-1 and let 12 = an. r = an an-1 = 12 3 = 4 The common ratio is 4.

Example 1. Geometric sequence of 3, 12, 48, … find a4 and a5. The common ratio is 4. a4 = r(a3) = 4(48) = 192 a5 = r(a4) = 4(192) = 768 The next two terms are 192 and 768

There is a pattern in the way the terms of a geometric sequence are formed.

Let’s look at example 1. 3 12 48 192 numerical symbols a1 a2 a3 a4 an In terms of r and the previous term a2 = r • a1 a1 = a1 a3 = r • a2 a4 = r • a3

In terms of r and the first term numerical a2 = 3(41) a1 = 3(40) a3 = 3(42) a4 = 3(43) symbols a2 = a1(r1) a1 = a1(r0) a3 = a1(r2) a4 = a1(r3)

Formula for the nth term of a geometric sequence. The nth term of a geometric sequence with first term a1 and common ratio r is given by an = an-1 • r or an = a1 • rn-1

Example 2. Write the first six terms of a geometric sequence in which a1 = 3 and r = 2 Method 1 use an = an-1(r) a3 = 6•2 = 12 a1 = 3 a2 = 3•2 = 6 a5 = 24•2 = 48 a4 = 12•2 = 24 a6 = 48•2 = 96

Example 2. Write the first six terms of a geometric sequence in which a1 = 3 and r = 2 Method 2 use an = a1(rn-1) a1 = 3•21-1 = 3 a2 = 3•22-1 = 6 a4 = 3•24-1 = 24 a3 = 3•23-1 = 12 a5 = 3•25-1 = 48 a6 = 3•26-1 = 96

Example 3. Find the ninth term of a geometric sequence in which a3 = 63 and r = -3. Method 1 use the common ratio and the given term. a4 = a3(-3) = 63(-3) = -189 a5 = a4(-3) = (-189)(-3) = 567

Example 3. Ninth term with a3 = 63 and r = -3 Method 1 use the common ratio and the given term. a4 = a3(-3) = 63(-3) = -189 a5 = a4(-3) = (-189)(-3) = 567 a6 = a5(-3) = (567)(-3) = -1701 a7 = a6(-3) = (-1701)(-3) = 5103

Example 3. Ninth term with a3 = 63 and r = -3 Method 1 use the common ratio and the given term. a6 = a5(-3) = (567)(-3) = -1701 a7 = a6(-3) = (-1701)(-3) = 5103 a8 = a7(-3) = (5103)(-3) = -15309 a9 = a8(-3) = (-15309)(-3) = 45927

Example 3. Ninth term with a3 = 63 and r = -3 Method 2 find a1 a3 = a1(r3-1) an = a1(rn-1) 63 = a1(-3)(2) 63 = a1(9) a1 = 93/9 = 7 a9 = a1(r(9-1)) = 7(-3)8 = 45927

The terms between any two nonconsecutive terms of a geometric sequence are called the geometric means. In the sequence 3, 12, 48, 192, 769, ... 12, 48, and 192 are the three geometric means between 3 and 769

Example 4. Find the three geometric means between 3.4 and 2125. Use the nth term formula to find r. 3.4, ____, ____, ____, 2125 3.4 is a1 2125 is a5

Example 4. Find the three geometric means between 3.4 and 2125. Use the nth term formula to find r. 3.4, ____, ____, ____, 2125 3.4 is a1 2125 is a5 a5 = 3.4(r4) an = a1(rn-1) 2125 = 3.4(r4) 625 = (r4) r = 5

Example 4. Three geometric means between 3.4 and 2125 r = 5 3.4 is a1 2125 is a5 Check both solutions If r = 5 a2 = 3.4(5) = 17 a3 = 17(5) = 85 a4 = 85(5) = 425 a5 = 425(5) = 2125

Example 4. Three geometric means between 3.4 and 2125 r = 5 3.4 is a1 2125 is a5 Check both solutions If r = -5 a2 = 3.4(-5) = -17 a4 = 85(-5) = -425 a3 = -17(-5) = 85 a5 = -425(-5) = 2125 Both solutions check

Example 4. Three geometric means between 3.4 and 2125 r = 5 3.4 is a1 2125 is a5 Both solutions check There are two sets of geometric means between 3.4 and 2125. 17, 85, and 425 and -17, 85, and -425