Rotations and quantized vortices in Bose superfluids

Slides:



Advertisements
Similar presentations
Creating new states of matter:
Advertisements

Trapped ultracold atoms: Bosons Bose-Einstein condensation of a dilute bosonic gas Probe of superfluidity: vortices.
DYNAMICS OF TRAPPED BOSE AND FERMI GASES
Dynamics of Spin-1 Bose-Einstein Condensates
Bose-Bose Mixtures: atoms, molecules and thermodynamics near the Absolute Zero Bose-Bose Mixtures: atoms, molecules and thermodynamics near the Absolute.
DYNAMICS OF TRAPPED BOSE AND FERMI GASES Sandro Stringari University of Trento IHP Paris, June 2007 CNR-INFM Lecture 2.
Fermi-Bose and Bose-Bose quantum degenerate K-Rb mixtures Massimo Inguscio Università di Firenze.
1 Eniko Madarassy Reconnections and Turbulence in atomic BEC with C. F. Barenghi Durham University, 2006.
World of ultracold atoms with strong interaction National Tsing-Hua University Daw-Wei Wang.
Bose-Einstein Condensates Brian Krausz Apr. 19 th, 2005.
Jairo Sinova 19 th of September 2002 Spinning a BEC away: quantum fluctuations, rotating BECs and 2D vortex matter Reference: J. Sinova et al, Phys. Rev.
Temperature scale Titan Superfluid He Ultracold atomic gases.
Ultracold Fermi gases : the BEC-BCS crossover Roland Combescot Laboratoire de Physique Statistique, Ecole Normale Supérieure, Paris, France.
SUPERFLUIDTY OF ULTRACOLD ATOMIC GASES
JILA June ‘95. BEC in external Potetnial V. Bagnato et al. Phys.Rev. 35, p4354 (1987) free space potential.
Aurel Bulgac University of Washington, Seattle, WA Collaborators: Yuan Lung (Alan) Luo (Seattle) Piotr Magierski (Warsaw/Seattle) Piotr Magierski (Warsaw/Seattle)
Dynamics of Bose-Einstein Condensates in Trapped Atomic Gases at Finite Temperature Eugene Zaremba Queen’s University, Kingston, Ontario, Canada Financial.
University of Trento INFM. BOSE-EINSTEIN CONDENSATION IN TRENTO SUPERFLUIDITY IN TRAPPED GASES University of Trento Inauguration meeting, Trento
1 Bose-Einstein Condensation PHYS 4315 R. S. Rubins, Fall 2009.
Dynamics of Quantum- Degenerate Gases at Finite Temperature Brian Jackson Inauguration meeting and Lev Pitaevskii’s Birthday: Trento, March University.
Bose-Einstein Condensate Fundaments, Excitation and Turbulence Vanderlei Salvador Bagnato Instituto de Física de São Carlos – Universidade de São Paulo.
Bose-Einstein Condensate Fundaments, Excitation and Turbulence Vanderlei Salvador Bagnato Instituto de Física de São Carlos – Universidade de São Paulo.
Theory of interacting Bose and Fermi gases in traps
Lectures on Quantum Gases Lectures G. Shlyapnikov 2015 年 6 月 10, 17, 25, 30 日, 下午 3:30-5:00 频标楼 4 楼报告厅 About the speaker : Director of Research at CNRS,
Ultracold Fermi gases University of Trento BEC Meeting, Trento, 2-3 May 2006 INFM-CNR Sandro Stringari.
Experiments with Fermi e Bose atomic gases in optical lattices Giovanni Modugno LENS, Università di Firenze, and INFM XXVII Convegno di Fisica Teorica,
Bose-Einstein condensates in optical lattices and speckle potentials Michele Modugno Lens & Dipartimento di Matematica Applicata, Florence CNR-INFM BEC.
Bose-Einstein Condensation and Superfluidity Lecture 1. T=0 Motivation. Bose Einstein condensation (BEC) Implications of BEC for properties of ground state.
Dynamics of phase transitions in ion traps A. Retzker, A. Del Campo, M. Plenio, G. Morigi and G. De Chiara Quantum Engineering of States and Devices: Theory.
Chapter 13 States of Matter Liquids and Solids Changes of State.
Quantum Monte Carlo methods applied to ultracold gases Stefano Giorgini Istituto Nazionale per la Fisica della Materia Research and Development Center.
Lecture 3 BEC at finite temperature Thermal and quantum fluctuations in condensate fraction. Phase coherence and incoherence in the many particle wave.
Superfluid dynamics of BEC in a periodic potential Augusto Smerzi INFM-BEC & Department of Physics, Trento LANL, Theoretical Division, Los Alamos.
Physics and Astronomy Dept. Kevin Strecker, Andrew Truscott, Guthrie Partridge, and Randy Hulet Observation of Fermi Pressure in Trapped Atoms: The Atomic.
Theory of interacting Bose and Fermi gases in traps Sandro Stringari University of Trento Crete, July 2007 Summer School on Bose-Einstein Condensation.
Lecture III Trapped gases in the classical regime Bilbao 2004.
Lecture IV Bose-Einstein condensate Superfluidity New trends.
Superfluidity in atomic Fermi gases Luciano Viverit University of Milan and CRS-BEC INFM Trento CRS-BEC inauguration meeting and Celebration of Lev Pitaevskii’s.
VORTICES IN BOSE-EINSTEIN CONDENSATES TUTORIAL R. Srinivasan IVW 10, TIFR, MUMBAI 8 January 2005 Raman Research Institute, Bangalore.
Experimental determination of Universal Thermodynamic Functions for a Unitary Fermi Gas Takashi Mukaiyama Japan Science Technology Agency, ERATO University.
Study of the LOFF phase diagram in a Ginzburg-Landau approach G. Tonini, University of Florence, Florence, Italy R. Casalbuoni,INFN & University of Florence,
Atoms in optical lattices and the Quantum Hall effect Anders S. Sørensen Niels Bohr Institute, Copenhagen.
Condensed matter physics in dilute atomic gases S. K. Yip Academia Sinica.
Optically Trapped Low-Dimensional Bose Gases in Random Environment
18.3 Bose–Einstein Condensation
B. Pasquiou (PhD), G. Bismut (PhD) B. Laburthe, E. Maréchal, L. Vernac, P. Pedri, O. Gorceix (Group leader) Spontaneous demagnetization of ultra cold chromium.
Dieter Jaksch, Irreversible loading of optical lattices Rotation of cold atoms University of Oxford Christopher Foot.
11/14/2007NSU, Singapore Dipolar Quantum Gases: Bosons and Fermions Han Pu 浦晗 Rice University, Houston, TX, USA Dipolar interaction in quantum gases Dipolar.
Calculation of Excitations of Superfluid Helium Nanodroplets Roman Schmied and Kevin K. Lehmann Department of Chemistry Princeton University 60 th Ohio.
Congresso del Dipartimento di Fisica Highlights in Physics –14 October 2005, Dipartimento di Fisica, Università di Milano Solitons in attractive.
Subir Sachdev Superfluids and their vortices Talk online:
Precision collective excitation measurements in the BEC-BCS crossover regime 15/06/2005, Strong correlations in Fermi systems A. Altmeyer 1, S. Riedl 12,
- Founded by INFM (Istituto Nazionale per la Fisica della Materia) June Hosted by University of Trento (Physics Department) - Director: Sandro Stringari.
Soliton-core filling in superfluid Fermi gases with spin imbalance Collaboration with: G. Lombardi, S.N. Klimin & J. Tempere Wout Van Alphen May 18, 2016.
Cold Gases Meet Condensed Matter Physics Cold Gases Meet Condensed Matter Physics C. Salomon Laboratoire Kastler Brossel, Ecole Normale Supérieure & UPMC,
Observation of Vortices in Superfluid He Droplets 67 th International Symposium on Molecular Spectroscopy Luis F. Gomez 1, Evgeny Loginov 2, and Andrey.
Agenda Brief overview of dilute ultra-cold gases
Superfluidity and Quantum Vortices. Outline of the presentation Bose-Einstein Condensation Superfluidity Quantum Vortix.
Superfluidity of ultracold
strongly interacting fermions: from spin mixtures to mixed species
Magnetization dynamics in dipolar chromium BECs
ultracold atomic gases
7. Ideal Bose Systems Thermodynamic Behavior of an Ideal Bose Gas
BOSE-EINSTEIN CONDENSATES A REVIEW OF EXPERIMENTAL RESULTS
INTRODUCTION and MOTIVATIONS
One-Dimensional Bose Gases with N-Body Attractive Interactions
Large Amplitude Superfluid Dynamics of a Unitary Fermi Gas
7. Ideal Bose Systems Thermodynamic Behavior of an Ideal Bose Gas
Mysterious Damping Action Explained
Quantum Phases Beyond Single-atom Condensation
Presentation transcript:

Rotations and quantized vortices in Bose superfluids F.Dalfovo INFM-BEC Trento and Dipartimento di matematica e fisica, Università Cattolica, Brescia

Outline Irrotational velocity field and superfluidity Work @ Trento (past, present, future) Liquid Helium vs. trapped condensates

A superfluid has an irrotational velocity field Complex order parameter: n : density S : phase Velocity field : which implies:

Consequences: No circulation in a simply connected region Quantized circulation in toroidal geometry. Quantized vortices (n=0 on the vortex line). Vortex lattices

Vortices observed at: JILA-Boulder ENS-Paris MIT Oxford Produced with different techniques: Phase imprinting, rotating laser spoon, rotating magnetic trap, rotating thermal cloud, selective evaporation, decay of solitons, etc.

A lot of physical questions: Nucleation mechanisms. Observation of density and phase. Stability, decay, precession. Shape and dynamics of a single vortex. Formation and dynamics of vortex lattices. Fast rotating condensates and giant vortices. Coreless vortices and textures in spinor condensates. Interaction with thermal atoms, solitons, surface modes. Vortex rings, vortex-antivortex pairs, etc. A lot of theoretical papers !!

Vortex-free configurations with angular momentum ℓ≠0

Possible route to vortex nucleation Almost spherical condensate in a rotating trap with Ω close to ω┴/√2 New stable configuration, spherical, with vortices Many quadrupole shape deformations are excited Vortices enter the condensate Highly deformed condensate with irrotational field Complex dynamics with nucleation of vortices at the surface The deformed condensate becomes dynamically unstable

Work done in Trento   Vortex nucleation and quadrupole deformation of a rotating Bose-Einstein condensate M. Kraemer, L. Pitaevskii, S. Stringari, F. Zambelli, Laser Physics 12, 113 (2002)  Consequence of superfluidity on the expansion of a rotating Bose-Einstein condensate M. Edwards, C. W. Clark, P. Pedri, L. Pitaevskii, and S. Stringari, Phys. Rev. Lett. 88, 070405 (2002)  A superfluid gyroscope with cold atomic gases S. Stringari, Phys. Rev. Lett. 86, 4725 (2001)    Shape deformations and angular momentum transfer in trapped Bose-Einstein condensates F. Dalfovo and S. Stringari, Phys. Rev. A 63, 011601(R) (2001)  Overcritical Rotation of a Trapped Bose-Einstein Condensate A. Recati, F. Zambelli, and S. Stringari, Phys. Rev. Lett 86, 377 (2001)  Moment of Inertia and Quadrupole Response Function of a Trapped Superfluid F. Zambelli and S. Stringari, Phys. Rev. A 63, 033602 (2001)  Free expansion of Bose-Einstein condensates with quantized vortices F. Dalfovo and M. Modugno, Phys. Rev. A 61, 023605 (2000)  Pinning of quantized vortices in helium drops by dopant atoms and molecules F. Dalfovo, R. Mayol, M. Pi, and M. Barranco, Phys. Rev. Lett. 85, 1028 (2000)  Scissors mode and superfluidity of a trapped Bose-Einstein condensed gas D. Guery-Odelin and S. Stringari, Phys. Rev. Lett 83, 4452 (1999)   Phase diagram of quantized vortices in a trapped Bose-Einstein condensed gas S. Stringari, Phys. Rev. Lett. 82, 4373 (1999)   Quantized vortices and collective oscillations of a trapped Bose condensed gas F. Zambelli and S. Stringari, Phys. Rev. Lett. 81, 1754 (1998)   Moment of Inertia and Superfluidity of a Trapped Bose Gas , S. Stringari, Phys. Rev. Lett. 76, 1405 (1996)   Bosons in anisotropic traps: ground state and vortices , F. Dalfovo and S. Stringari, Phys. Rev. A 53, 2477 (1996)

Present and next future: Most recent activity: Scissors mode in rotating condensates Scissors mode of a rotating Bose-Einstein condensate, M.Cozzini, S. Stringari, V. Bretin, P. Rosenbusch, J. Dalibard, PRA 67, 021602 (2003) Macroscopic dynamics of vortex lattices Macroscopic dynamics of a Bose-Einstein condensate containing a vortex lattice, Marco Cozzini and Sandro Stringari, e-print cond-mat/0211294 Present and next future: More about vortex lattices Stationary configurations, Collective oscillations, elastic properties, dynamics, …

Scissors mode below Tc : the superfluid oscillates with frequency Scissors mode above Tc : the gas oscillates with frequencies

Back to Helium

Helium nanodroplets From: “Superfluid Helium Droplets: An Ultracold Nanolaboratory”, J.P. Toennies, A.F. Vilesov, K.B. Whaley, Phys. Today 54 (2001)

Helium droplet ↔ trapped BEC Helium is dense Condensate fraction is 10% in bulk at T=0 Superfluid fraction is 100% in bulk at T=0 Helium droplets are self bound (no confinement) Temperature of droplets is about 0.15 - 0.4 K (evaporative cooling)

Density functional calculations for helium nanodroplets: Moment of inertia A superfluid hydrodynamic model for the enhanced moments of inertia of molecules in liquid 4He, C. Callegari, A. Conjusteau, I. Reinhard, K. K. Lehmann, G. Scoles, F. Dalfovo Phys. Rev. Lett. 83, 5058 (1999) Quantized vortices Pinning of quantized vortices in helium drops by dopant atoms and molecules , F. Dalfovo, R. Mayol, M. Pi, and M. Barranco, Phys. Rev. Lett. 85, 1028 (2000) Quantized Vortices in Mixed 3He-4He Drops, R. Mayol, M. Pi, and M. Barranco, and F. Dalfovo, Phys. Rev. Lett. 87, 145301 (2001)

Trapped BEC with a vortex Helium droplet with a vortex F. D., R. Mayol, M. Pi, and M. Barranco, Phys. Rev. Lett. 85, 1028 (2000) ← Trapped BEC with a vortex F. D. and S. Stringari, Phys. Rev. A 53, 2477 (1996) ↓

Helium droplet + vortex + HCN ←

Conclusions Rotational properties and quantized vorticity are intimately connected to superfluidity. Dilute condensates in traps represent a wonderful testing ground for theories on quantum fluids. Dilute condensates and liquid helium are good friends. They look different, but they speak the same language.