Water, Electrolytes, and

Slides:



Advertisements
Similar presentations
Joe Pistack MS/ED.  Intracellular-water located in all the cells of the body.  About 63% of the water is located in the intracellular compartments.
Advertisements

Fluid, Electrolyte & Acid- Base Balance. Body Fluids Your body is 66% water Not evenly distributed – separated into compartments Able to move back and.
Fluid, Electrolyte, and Acid-Base Balance
1 Water, Electrolyte, and Acid- Base Balance Chapter 18 Bio 160.
Fluid, Electrolyte, and Acid-Base Balance
The Urinary System: Fluid and Electrolyte Balance
Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings Fundamentals of Anatomy & Physiology SIXTH EDITION Frederic H. Martini Lecture.
 2009 Cengage-Wadsworth Chapter 14 Body Fluid & Electrolyte Balance.
Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings PowerPoint ® Lecture prepared by Kathleen A. Ireland, Seabury Hall, Maui, Hawaii.
WATER, ELECTROLYTE AND ACID/BASE BALANCE CHAPTER 21.
Elsevier items and derived items © 2007, 2003, 2000 by Saunders, an imprint of Elsevier Inc. Slide 1 Chapter 25 Water, Electrolyte, and Acid-Base Balance.
Principles of Anatomy and Physiology
Part 1. Fluid and Electrolyte Balance
Chapter 26.  Varies with weight, age, and sex:  Early embryo (97%)  Newborn (77%)  Adult male (60%)  Adult female (54%)  Elderly (45%)  Adipose.
PHYSIOLOGY OF WATER- ELECTROLYTES BALANCE. Total body water in adult human % %
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 18.
Urinary System Spring 2010.
Fluid, Electrolyte, and Acid-Base Balance
Chapter 27 Lecture Outline*
Fluids and Electrolytes Water is the largest single component of the body. Water comprises 95% of the body’s fluids.
Fluid, Electrolyte and pH Balance
Water, Electrolyte, and pH Balance
Chapter 22 Fluid, Electrolyte and Acid-Base Balance
Copyright © 2009 Wolters Kluwer Health | Lippincott Williams & Wilkins Memmler’s The Human Body in Health and Disease 11 th edition Chapter 21 Body Fluids.
Water, Electrolytes, and Acid-Base Balance $100 $200 $300 $400 $500 $100$100$100 $200 $300 $400 $500 Body Fluids FINAL ROUND ElectrolytesAcid-BaseClinical.
Fluid, Electrolyte, and Acid-Base Homeostasis A. Fluid compartments and fluid balance B. Water 1. Regulation of fluid intake (gain) 1. Regulation of fluid.
Chemistry, Solutions, and Acid/Base Balance.
PowerPoint Presentation to accompany Hole’s Human Anatomy and Physiology, 9/e by Shier, Butler, and Lewis.
Water, Electrolyte, and Acid-Base Balance
Maintaining Water-Salt/Acid-Base Balances and The Effects of Hormones
PowerPoint ® Lecture Slide Presentation by Patty Bostwick-Taylor, Florence-Darlington Technical College Copyright © 2009 Pearson Education, Inc., publishing.
Water, Electrolytes, and
Fluid, Electrolyte, and Acid–Base Balance
Fluid, Electrolyte and Acid-Base Balance
Copyright © 2004 Lippincott Williams & Wilkins Chapter 21 Body Fluids.
1 Chapter 2 Normal Water, Electrolytes, and Acid-base Balance Professor A. S. Alhomida Disclaimer The texts, tables, figures and images contained in this.
1 Acid-Base Balance  Normal pH of body fluids  Arterial blood is 7.4  Venous blood and interstitial fluid is 7.35  Intracellular fluid is 7.0  Alkalosis.
Acid-Base Balance.  Blood - normal pH of 7.2 – 7.45  7.45 = alkalosis  3 buffer systems to maintain normal blood pH 1. Buffers 2. Removal of CO 2 by.
© 2012 Pearson Education, Inc. Figure 27-1a The Composition of the Human Body SOLID COMPONENTS (31.5 kg; 69.3 lbs) ProteinsLipidsMineralsCarbohydratesMiscellaneous.
ELAINE N. MARIEB EIGHTH EDITION 15 Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings PowerPoint ® Lecture Slide Presentation by.
Essentials of Human Anatomy & Physiology Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Slides – Seventh Edition.
Figure 27-1a The Composition of the Human Body.
Fluids and Acid Base Physiology Dr. Meg-angela Christi Amores.
Pages  Blood composition depends on: 1. Diet 2. Cellular metabolism 3. Urine output  How the kidneys manage blood composition: 1. Excretion.
Regulation of Potassium K+
Urinary Physiology 15c. Homeostasis Blood Composition maintained by –Diet –Cellular metabolism –Urine output Function of Kidneys in blood homeostasis.
Fluid, Electrolyte & Acid-Base Balance
Acid Base Balance Dr. Eman El Eter.
Chapter 18. Water, electrolyte,and acid-base balance help maintain homeostasis Electrolyte – molecules that release ions in water Water and electrolytes.
Fluid, Electrolyte, and Acid- Base Homeostasis. Body Fluids Females - 55%, males -60% Interrelationship between intracellular fluid (65%), interstitial.
Water, Electrolyte, and Acid-Base Balance
Fluid, Electrolyte, and Acid-Base Balance  Fluid balance The amount of water gained each day equals the amount lost  Electrolyte balance The ion gain.
Fluid, Electrolyte, and Acid Base Homeostasis
Maintaining Water-Salt/Acid-Base Balances and The Effects of Hormones
Ch 26 Fluid, Electrolyte, and Acid-Base Balance Overview
Acid-Base Imbalance.
© 2018 Pearson Education, Inc..
Anatomy and Physiology
Acid-Base Imbalance.
The Urinary System.
URINARY SYSTEM: Fluid, Electrolyte, and Acid-Base Balance
Maintaining Water Balance
The Urinary System.
PHYSIOLOGY OF WATER-ELECTROLYTES BALANCE
Biology 212 Anatomy & Physiology I
CopyrightThe McGraw-Hill Companies, Inc
Physiology: Lecture 3 Body Fluids
Fluid, Electrolyte, and Acid-Base Balance in Blood
Biology 212 Anatomy & Physiology I
Fluid, Electrolyte, and Acid-Base Balance
Presentation transcript:

Water, Electrolytes, and Acid-Base Balance

Body Fluids Intracellular Extracellular All fluids inside cells of body About 40% of total body weight Extracellular All fluids outside cells About 20% of total body weight Subcompartments Interstitial fluid and plasma; lymph, CSF, synovial fluid

Body Fluid Compartments

Water Content Regulation Sources of water Ingestion Cellular metabolism Routes of water loss Urine Evaporation Perspiration Respiratory passages Feces Content regulated so total volume of water in body remains constant Kidneys primary regulator of water excretion Regulation processes Osmosis Osmolality Baroreceptors Learned behavior

Extracellular Fluid Osmolality Adding or removing water from a solution changes this Increased osmolality Triggers thirst and ADH secretion Decreased osmolality Inhibits thirst and ADH secretion

Hormonal Regulation of Blood Osmolality

Regulation of ECF Volume Increased ECF results in Decreased aldosterone secretion Increased ANH secretion Decreased ADH secretion Decreased sympathetic stimulation Decreased ECF results in Increased aldosterone secretion Decreased ANH secretion Increased ADH secretion Increased sympathetic stimulation Mechanisms Neural Renin-angiotensin-aldosterone Atrial natriuretic hormone (ANH) Antidiuretic hormone (ADH)

Hormonal Regulation of Blood Volume

Hormonal Regulation of Blood Volume

Regulation of ECF Volume

Regulation of ICF and ECF

Regulation of Electrolytes in ECF Na+ Ions Dominant ECF cations Responsible for 90-95% of osmotic pressure Regulation of Na+ ions Kidneys major route of excretion Small quantities lost in sweat Terms Hypernatremia Hyponatremia Electrolytes Molecules or ions with an electrical charge Water ingestion adds electrolytes to body Kidneys, liver, skin, lungs remove from body Concentration changes only when growing, gaining or losing weight

Mechanisms Regulating Blood Sodium

Mechanisms Regulating Blood Sodium

Abnormal Plasma Levels of Sodium Ions

Regulation of Chloride, Potassium, Magnesium Ions Potassium ions Maintained in narrow range Affect resting membrane potentials Aldosterone increases amount secreted Terms Hyperkalemia Hypokalemia Chloride ions Predominant anions in ECF Magnesium ions Capacity of kidney to reabsorb is limited Excess lost in urine Decreased extracellular magnesium results in greater degree of reabsorption

Potassium Ion Regulation in ECF

Abnormal Concentration of Potassium Ions

Abnormal Plasma Levels of Magnesium Ions

Regulation of Blood Magnesium

Regulation of Calcium Ions PTH increases Ca2+ extracellular levels and decreases extracellular phosphate levels Vitamin D stimulates Ca2+ uptake in intestines Calcitonin decreases extracellular Ca2+ levels Regulated within narrow range Elevated extracellular levels prevent membrane depolarization Decreased levels lead to spontaneous action potential generation Terms Hypocalcemia Hypercalcemia

Regulation of Calcium Ions

Regulation of Phosphate Ions Under normal conditions, reabsorption of phosphate occurs at maximum rate in the nephron An increase in plasma phosphate increases amount of phosphate in nephron beyond that which can be reabsorbed; excess is lost in urine

Regulation of Blood Phosphate

Acids and Bases and Buffers Buffers: Resist changes in pH When H+ added, buffer removes When H+ removed, buffer replaces Types of buffer systems Carbonic acid/bicarbonate Protein Phosphate Acids Release H+ into solution Bases Remove H+ from solution Acids and bases Grouped as strong or weak

Regulation of Acid-Base Balance

Regulation of Acid-Base Balance

Buffer Systems

Respiratory Regulation of Acid-Base Balance Respiratory regulation of pH is achieved through carbonic acid/bicarbonate buffer system As carbon dioxide levels increase, pH decreases As carbon dioxide levels decrease, pH increases Carbon dioxide levels and pH affect respiratory centers Hypoventilation increases blood carbon dioxide levels Hyperventilation decreases blood carbon dioxide levels

Respiratory Regulation of Acid-Base Balance

Renal Regulation of Acid-Base Balance Secretion of H+ into filtrate and reabsorption of HCO3- into ECF cause extracellular pH to increase HCO3- in filtrate reabsorbed Rate of H+ secretion increases as body fluid pH decreases or as aldosterone levels increase Secretion of H+ inhibited when urine pH falls below 4.5

Kidney Regulation of Acid-Base Balance

Hydrogen Ion Buffering

Acidosis and Alkalosis Acidosis: pH body fluids below 7.35 Respiratory: Caused by inadequate ventilation Metabolic: Results from all conditions other than respiratory that decrease pH Alkalosis: pH body fluids above 7.45 Respiratory: Caused by hyperventilation Metabolic: Results from all conditions other than respiratory that increase pH Compensatory mechanisms

Acidosis and Alkalosis