Ion Chromatography
Ion Exchange Separation is facilitated by formation of ionic bonds between charged samples and charged column packings
Ions Ions can be characterised as: organic, inorganic, anion or cation and mono or polyvalent
Chemical Considerations Anion or Cation exchanger
Strong vs Weak Exchange Materials Strong exchangers stay ionised as pH varies between 2 and 12. Weak exchangers can lose ionisation as a function of pH.
Factors Affecting Ion Exchange Retention
Control of Ion exchange by pH Changing the pH can eliminate the charge of the column if the column is weak, or eliminate the charge on the ion if ion is weak. Either way, the retention is reduced. Strong ion - Weak Exchanger
Exchange Capacity of Anion Exchanges Exchange Capacity: Number of functional groups per unit weight of resin
Exchange Capacity of Anion Exchanges pH has no effect on capacity of strong cation exchanges. Weak cation exchanges change dramatically with pH.
Control of Ion exchange by Ionic Strength Sample ZoneBGE Zone A - + As the concentration of the eluent ion increases, retention tends to decrease
Control of Ion exchange by Eluent Ion cations anions
The equilibrium constant At pH=pKa 50% is ionised and 50% is neutral At pH=pKa +1 90% is ionised At pH=pKa -1 10% is ionised
Common Acidic Buffers
Common Basic Buffers
Anion exchange Separation development Sample: Weak or strong? Column: weak or strong? pH ?
Anion exchange Separation development
Cation exchange method development Column: Strong Cation Exchange Sample: Weak bases pH: acidic (all compounds are ionised)
Effect of ionic strength
Effect of pH Compare this separation at pH=4.55 and 0.05 in the previous example. Increasing pH reduced retention.
Effect of Temperature Increasing temperature increases efficiency, decreases k’, and may affect . This is due to improved mass transfer.
UV Detection UV detection. Direct detectionUV transparent eluent eg, bromide, nitrate, nitrite, Indirect Detection UV absorbing electrolyte. Anions are detected via “vacancies” in background absorbance universal detection usually used when other modes of detection are unavailable. Very specific
Concentration Changes
UV Detection
Direct UV Detection
Indirect UV Detection
Indirect UV detection
Conductivity Detection Ohms law V= IR conductance, G = Non - Suppressed direct - low conducting eluent - high conducting analytes indirect- high conducting eluents - low conducting analytes
Ion Conductances
Conductivity Detection
Direct Conductivity Detection
Waters Ion Analysis Method Eluent: Borate/Gluconate Column: IC Pak HR Flow Rate: 1ml/min Injection 50 ul Detection: Direct Conductivity Background: 274 uS
Indirect Conductivity
Conductivity Detection Suppressed
Membrane Suppressor
Autosuppression
Eluent Generation KOH
Eluent Generation MSA
Why the difference?
Separation of Cations
Practical Sessions (1)Analysis of Inorganic Anions by direct conductivity.