Caio A. S. Coelho Centro de Previsão de Tempo e Estudos Climáticos (CPTEC) Instituto Nacional de Pesquisas Espaciais (INPE) 1 st EUROBRISA workshop, Paraty, March 2008 Deriving South America seasonal rainfall from upper level circulation predictions
Conceptual framework Data Assimilation “Forecast Assimilation” Stephenson et al. (2005)
Calibration and combination experiment Common hindcast period: (19 years) y: observed rainfall (GPCP, Adler et al ) x: predicted upper level (200 hPa) circulation Use two EUROSIP model predictions: ECMWF System 3 UK Met Office Target season: DJF Start date: November (i.e. 1-month lead predictions for DJF) NCEP/NCAR Reanalysis (Kalnay et al. 1996) is used to verify predicted upper level circulation
Upper level circulation u: zonal wind v: meridional wind : stream function : zonal mean of : perturbed (eddy) stream function u v
Observed perturbed stream function
ECMWF perturbed stream function
UKMO perturbed stream function
Perturbed stream function verification
El Niño Observed perturbed stream function anomaly
La Niña Observed perturbed stream function anomaly
La Niña El Niño Observed perturbed stream function anomaly
El Niño ECMWF perturbed stream function anomaly
La Niña ECMWF perturbed stream function anomaly
El Niño La Niña ECMWF perturbed stream function anomaly
El Niño UKMO perturbed stream function anomaly
La Niña UKMO perturbed stream function anomaly
El Niño La Niña UKMO perturbed stream function anomaly
Perturbed stream function anomaly verification
Prior: Likelihood: Posterior: Calibration and combination procedure: Forecast Assimilation Matrices Stephenson et al. (2005) Forecast assimilation uses first three leading MCA modes of the matrix Y T X. X: circulation predictions (ECMWF + UKMO) Y: DJF rainfall
Forecast Assimilation: First MCA mode
Forecast Assimilation: Second MCA mode
Forecast Assimilation: Third MCA mode
Correlation between predicted and observed anomalies Forecast Assimilation ECMWF UKMO Issued: November, Valid for DJF, Hindcast period: Upper level circulation derived predictions obtained with forecast assimilation have comparable level of skill to indiv. model predictions
ECMWF UKMO Forecast Assimilation Ranked Probability Skill Score (tercile categories) Issued: November, Valid for DJF, Hindcast period:
Gerrity Score (tercile categories) ECMWF UKMO Forecast Assimilation Issued: November, Valid for DJF, Hindcast period:
ROC Skill Score (positive or negative anomaly) ECMWF UKMO Forecast Assimilation
Issued: November, Valid for DJF, Hindcast period: Reliability diagram (positive or negative anomaly) ECMWFUKMOForecast Assimilation Forecast assimilation improves prediction reliability
ROC plot (positive or negative anomaly) Issued: November, Valid for DJF, Hindcast period: ECMWFUKMO Forecast Assimilation
Summary Forecast assimilation is a useful framework for exploring atmospheric teleconnections in seasonal forecasts ENSO atmospheric teleconnections is the main source of skill for South America rainfall predictions Combined and calibrated circulation derived predictions obtained with forecast assimilation have comparable level of skill to single model rainfall prediction Additional skill improvements can be investigated by including humidity predictions in the forecast assimilation procedure