Game Theory S-1.

Slides:



Advertisements
Similar presentations
Introduction to Game Theory
Advertisements

9.1 Strictly Determined Games Game theory is a relatively new branch of mathematics designed to help people who are in conflict situations determine the.
Oligopoly.
NON - zero sum games.
GAME THEORY.
Module 4 Game Theory To accompany Quantitative Analysis for Management, Tenth Edition, by Render, Stair, and Hanna Power Point slides created by Jeff Heyl.
15 THEORY OF GAMES CHAPTER.
APPENDIX An Alternative View of the Payoff Matrix n Assume total maximum profits of all oligopolists is constant at 200 units. n Alternative policies.
Two-Player Zero-Sum Games
Chapter 10 Game Theory and Strategic Behavior
Operations Research Assistant Professor Dr. Sana’a Wafa Al-Sayegh 2 nd Semester ITGD4207 University of Palestine.
1 Chapter 4: Minimax Equilibrium in Zero Sum Game SCIT1003 Chapter 4: Minimax Equilibrium in Zero Sum Game Prof. Tsang.
An Introduction to... Evolutionary Game Theory
MIT and James Orlin © Game Theory 2-person 0-sum (or constant sum) game theory 2-person game theory (e.g., prisoner’s dilemma)
Game theory.
© 2015 McGraw-Hill Education. All rights reserved. Chapter 15 Game Theory.
Game Theory. “If you don’t think the math matters, then you don’t know the right math.” Chris Ferguson 2002 World Series of Poker Champion.
Game Theory. Games Oligopolist Play ▫Each oligopolist realizes both that its profit depends on what its competitor does and that its competitor’s profit.
Part 3: The Minimax Theorem
Chapter 11 Game Theory and the Tools of Strategic Business Analysis.
Games What is ‘Game Theory’? There are several tools and techniques used by applied modelers to generate testable hypotheses Modeling techniques widely.
OLIGOPOLY AND GAME THEORY Phillip J Bryson Marriott School, BYU.
GAME THEORY.
5/16/20151 Game Theory Game theory was developed by John Von Neumann and Oscar Morgenstern in Economists! One of the fundamental principles of.
A camper awakens to the growl of a hungry bear and sees his friend putting on a pair of running shoes, “You can’t outrun a bear,” scoffs the camper. His.
Principles of Microeconomics November 26 th, 2013.
Objectives © Pearson Education, 2005 Oligopoly LUBS1940: Topic 7.
Decision Analysis April 11, Game Theory Frame Work Players ◦ Decision maker: optimizing agent ◦ Opponent  Nature: offers uncertain outcome  Competition:
Advanced Microeconomics Instructors: Wojtek Dorabialski & Olga Kiuila Lectures: Mon. & Wed. 9:45 – 11:20 room 201 Office hours: Mon. & Wed. 9:15 – 9:45.
An Introduction to Game Theory Part III: Strictly Competitive Games Bernhard Nebel.
1 Section 2d Game theory Game theory is a way of thinking about situations where there is interaction between individuals or institutions. The parties.
Introduction to Game Theory Yale Braunstein Spring 2007.
Game Theory Objectives:
To accompany Quantitative Analysis for Management, 8e by Render/Stair/Hanna S-1 © 2003 by Prentice Hall, Inc. Upper Saddle River, NJ Supplement 1.
Game Theory.
Game Theory Statistics 802. Lecture Agenda Overview of games 2 player games representations 2 player zero-sum games Render/Stair/Hanna text CD QM for.
Game Theory.
4 Game Theory To accompany Quantitative Analysis for Management, Twelfth Edition, by Render, Stair, Hanna and Hale Power Point slides created by Jeff Heyl.
Starbucks, Beating The Prisoners Dillema Brooke Hatcher Econ 202 April 28 th, 2012.
Game Theory.
Chapter 12 & Module E Decision Theory & Game Theory.
To accompany Quantitative Analysis for Management,9e by Render/Stair/Hanna M4-1 © 2006 by Prentice Hall, Inc. Upper Saddle River, NJ Module 4 Game.
Game Theory Warin Chotekorakul MD 1/2004. Introduction A game is a contest involving to or more players, each of whom wants to win. Game theory is the.
Standard and Extended Form Games A Lesson in Multiagent System Based on Jose Vidal’s book Fundamentals of Multiagent Systems Henry Hexmoor, SIUC.
Q 5-2 a. E = Efficiency score wi = Weight applied to i ’s input and output resources by the composite hospital.
Game Theory Robin Burke GAM 224 Spring Outline Admin Game Theory Utility theory Zero-sum and non-zero sum games Decision Trees Degenerate strategies.
Strategic Decisions in Noncooperative Games Introduction to Game Theory.
A Little Game Theory1 A LITTLE GAME THEORY Mike Bailey MSIM 852.
Chapter 11 Game Theory Math Game Theory What is it? – a way to model conflict and competition – one or more "players" make simultaneous decisions.
Game Theory: introduction and applications to computer networks Game Theory: introduction and applications to computer networks Lecture 2: two-person non.
Chapter 12 - Imperfect Competition: A Game-Theoretic Approach Copyright © 2015 The McGraw-Hill Companies, Inc. All rights reserved.
Lecture 5 Introduction to Game theory. What is game theory? Game theory studies situations where players have strategic interactions; the payoff that.
Part 3 Linear Programming
1 What is Game Theory About? r Analysis of situations where conflict of interests is present r Goal is to prescribe how conflicts can be resolved 2 2 r.
Game Theory Optimal Strategies Formulated in Conflict MGMT E-5070.
Statistics Overview of games 2 player games representations 2 player zero-sum games Render/Stair/Hanna text CD QM for Windows software Modeling.
INDEX Introduction of game theory Introduction of game theory Significance of game theory Significance of game theory Essential features of game theory.
Lec 23 Chapter 28 Game Theory.
By: Donté Howell Game Theory in Sports. What is Game Theory? It is a tool used to analyze strategic behavior and trying to maximize his/her payoff of.
Game Theory Dr. Andrew L. H. Parkes “Economics for Business (2)” 卜安吉.
Oligopoly. Some Oligopolistic Industries Economics in Action - To get a better picture of market structure, economists often use the “four- firm concentration.
Game Theory M.Pajhouh Niya M.Ghotbi
Chapter 15: Game Theory: The Mathematics Lesson Plan of Competition
Tools for Decision Analysis: Analysis of Risky Decisions
Chapter 12 - Imperfect Competition: A Game-Theoretic Approach
Introduction to Game Theory
Chapter 6 Game Theory (Module 4) 1.
Game Theory and Strategic Play
Chapter 15: Game Theory: The Mathematics Lesson Plan of Competition
Presentation transcript:

Game Theory S-1

Basic Ideas of Game Theory Game theory is the general theory of strategic behavior. Generally depicted in mathematical form. Plays an important role in modern economics. Study of how optimal strategies are formulated in conflict The study of game theory dates back to 1944 when John von Neumann and Oscar Morgenstern published Theory of Games and Economic Behavior In 1994, John Harsanui, John Nash and Reinhard Selten received the Nobel Prize in Economics for developing the notion of noncooperative game theory 2

Rules, Strategies, Payoffs, and Equilibrium A game is a contest involving two or more decision makers, each of whom wants to win Game theory is the study of how optimal strategies are formulated in conflict A player's payoff is the amount that the player wins or loses in a particular situation in a game. A players has a dominant strategy if that player's best strategy does not depend on what other players do. A two-person game involves two parties (X and Y) A zero-sum game means that the sum of losses for one player must equal the sum of gains for the other. Thus, the overall sum is zero 4

Rules, Strategies, Payoffs, and Equilibrium Economic situations are treated as games. The rules of the game state who can do what, and when they can do it. A player's strategy is a plan for actions in each possible situation in the game. Strategies taken by others can dramatically affect the outcome of our decisions In the auto industry, the strategies of competitors to introduce certain models with particular features can impact the profitability of other carmakers 3

Payoff Matrix - Store X Two competitors are planning radio and newspaper advertisements to increase their business. This is the payoff matrix for store X. A negative number means store Y has a positive payoff S-5

Game Outcomes S-6

Minimax Criterion Look to the “cake cutting problem” to explain Cutter – maximize the minimum the Chooser will leave him Chooser – minimize the maximum the Cutter will get Chooser  Cutter Choose bigger piece Choose smaller piece Cut cake as evenly as possible Half the cake minus a crumb Half the cake plus a crumb Make one piece bigger than the other Small piece Big piece 4

Minimax Criterion The game favors competitor X, since all values are positive except one. This means X would get a positive payoff in 3 of the 4 strategies and Y has a positive payoff in only 1 strategy Since Y must play the game (do something about the competition), he will play to minimize total losses using the minimax criterion. 4

Minimax Criterion For a two-person, zero-sum game, each person chooses the strategy that minimizes the maximum loss or maximize one’s minimum gains Player Y (columns)is looking at a maximum loss of 3 under strategy Y1 and loss of 5 under Y2 Y should choose Y1 which results in a maximum loss of 3 (minimum of 3 and 5) – minimum of the maximums (upper value of the game) The minimum payoffs for X (rows) are +3 (strategy X1 ) and -5 (strategy X2) X should choose strategy X1 – the maximum of the minumums (lower value of the game) 4

Minimax Criterion If the upper and lower values are the same, the number is called the value of the game and an equilibrium or saddle point condition exists The value of a game is the average or expected game outcome if the game is played an infinite number of times A saddle point indicates that each player has a pure strategy i.e., the strategy is followed no matter what the opponent does 4

Saddle Point Von Neumann likened the solution point to the point in the middle of a saddle shaped mountain pass It is, at the same time, the maximum elevation reached by a traveler going through the pass to get to the other side and the minimum elevation encountered by a mountain goat traveling the crest of the range S-11

Pure Strategy - Minimax Criterion Player Y’s Strategies Minimum Row Number Y1 Y2 Player X’s strategies X1 10 6 X2 -12 2 Maximum Column Number S-12

Mixed Strategy Game When there is no saddle point, players will play each strategy for a certain percentage of the time The most common way to solve a mixed strategy is to use the expected gain or loss approach A player plays each strategy a particular percentage of the time so that the expected value of the game does not depend upon what the opponent does Y1 P Y2 1-P Expected Gain X1 Q 4 2 4P+2(1-P) X2 1-Q 1 10 1P+10(1-p) 4Q+1(1-Q) 2Q+10(1-q) 4

Solving for P & Q 4P+2(1-P) = 1P+10(1-P) or: P = 8/11 and 1-p = 3/11 Expected payoff: 1P+10(1-P) =1(8/11)+10(3/11) EPX= 3.46 4Q+1(1-Q)=2Q+10(1-q) or: Q=9/11 and 1-Q = 2/11 EPY=3.46 S-14

Example Using the solution procedure for a mixed strategy game, solve the following game S-15

Example This game can be solved by setting up the mixed strategy table and developing the appropriate equations: S-16

Example S-17

Nash Equilibrium Occurs when each player's strategy is optimal, given the strategies of the other players. A player's best response (or best strategy) is the strategy that maximizes that player's payoff, given the strategies of other players. A Nash equilibrium is a situation in which each player makes his or her best response. Amy and Phil are in Nash equilibrium if Amy is making the best decision she can, taking into account Phil's decision, and Phil is making the best decision he can, taking into account Amy's decision. 5

Prisoner's Dilemma Famous example of game theory. Strategies must be undertaken without the full knowledge of what other players will do. Players adopt dominant strategies, but they don't necessarily lead to the best outcome. 6

Prisoner's Dilemma Two people are arrested, but the police do not have enough information for a conviction. The police separate the two and offer both the same deal: If one testifies against the partner and the other remains silent, the betrayer gets 1 year and the one that remains silent gets 8 years. If both remain silent, both are sentenced to 3 years in jail. If each 'rats out' the other, each receives a 4 year sentence. Each prisoner must choose either to betray or remain silent; the decision of each is kept secret from his partner. What should they do? 6

Prisoner's Dilemma If it is assumed that each player is only concerned with lessening his/her time in jail, the game becomes a non-zero sum game where the two players may either assist or betray the other. The sole concern of the prisoners seems to be increasing their own reward. The interesting symmetry of this problem is that the optimal decision for each is to betray the other, even though they would be better off if they both cooperated. 6

Prisoner’s Dilemma 7

Bonnie’s Decision Tree Clyde has a similar decision tree The best strategy for each is to confess even though the better payoff comes from being silent Instead of 3 years each by not confessing, they end up with 4 years each 8

Dominance A strategy can be eliminated if all its game’s outcomes are the same or worse than the corresponding outcomes of another strategy A strategy for a player is said to be dominated if the player can always do as well or better playing another strategy S-24

Domination Initial Game Revised Game Y1 Y2 X1 4 3 X2 2 20 X3 1 Y1 Y2 X1 4 3 X2 2 20 X3 is a dominated strategy as player X can always do better with X1 or X2 S-25

Domination Initial Game Y1 Y2 Y3 Y4 X1 -5 4 6 -3 X2 -2 2 -20 Game after dominated strategies are removed for player Y Y1 Y4 X1 -5 -3 X2 -2 -20 S-26