MOMENTUM! Momentum Impulse Conservation of Momentum in 1 Dimension Conservation of Momentum in 2 Dimensions Angular Momentum Torque Moment of Inertia.

Slides:



Advertisements
Similar presentations
PHYSICS UNIT 4: ENERGY & MOMENTUM
Advertisements

Chapter 12: Momentum 12.1 Momentum
Aim: How can we apply conservation of momentum to collisions? Aim: How can we apply conservation of momentum to collisions? Identify conservation laws.
Momentum and Impulse. What is Momentum? Momentum – The product of the mass and velocity of an object. Has magnitude and direction. Momentum = p = mv P.
Halliday/Resnick/Walker Fundamentals of Physics 8th edition
Momentum and Impulse Chapter 9.
Conservation of Momentum
Momentum and Impulse So far we’ve studied the properties of a single object; i.e. its motion and energy How do we analyze the motion of two or more objects.
Momentum Chapter 6. Underlined words are WOD.. Momentum Momentum: mass in motion. Abbreviated with a rho which looks like a “p” Momentum is a vector!!
AP Physics Impulse and Momentum. Which do you think has more momentum?
Chapter 7: Linear Momentum (p)
Newton’s Third Law of Motion
Chapter 7 Momentum and Collisions. Momentum Newton’s Laws give a description of forces ○ There is a force acting or their isn’t ○ But what about in between.
Motion, Forces, and Energy
Newton’s Laws of Motion
Chapter 18 Section 3 Collisions. Mass Mass is the amount of matter in an object The mass of an object affects how easy it is to changes its motion.
MOMENTUM!.
Ch. 8 Momentum and its conservation
Linear Momentum why is more force needed to stop a train than a car if both travel at the same speed? why does a little tiny bullet have so much force.
Which takes more force to stop? Big 2m/s Small 2 m/s Big 0.6 m/s Small 6 m/s Small 2 m/s 100 m/s.
Today: Momentum – chapter 9 11/03 Finish momentum & review for exam 11/8 Exam 2 (5 – 8) 11/10 Rotation 11/15 Gravity 11/17 Waves & Sound 11/22 Temperature.
AP Physics B Impulse and Momentum. Using Physics terms, what put the egg in motion? Once the egg was moving, why did it keep moving?
Chapter 3 Forces & Newton’s Laws
Physical Science 2 Chapter 2.3 & Chapter 3 Forces.
Chapter 7 Linear Momentum. MFMcGraw-PHY 1401Chap07b- Linear Momentum: Revised 6/28/ Linear Momentum Definition of Momentum Impulse Conservation.
The Nature of Force Chapter 3 section 4 What is a force Force is a push or pull. Forces are either balanced or unbalanced.
Equilibrium Forces and Unbalanced Forces. Topic Overview A force is a push or a pull applied to an object. A net Force (F net ) is the sum of all the.
M O MENTUM!. Momentum Defined p = m v p = momentum vector m = mass v = velocity vector.
Momentum The world is filled with objects in motion. Objects have many properties such as color, size, and composition. One important property of an object.
Momentum and Impulse.
Physics 203 – College Physics I Department of Physics – The Citadel Physics 203 College Physics I Fall 2012 S. A. Yost Chapter 7 Part 2 Momentum and Collisions.
Impulse and Momentum AP Physics B.
Chapter 7 Linear Momentum. Objectives: The student will be able to: Perform several investigations in order to make conclusions about the total momentum.
Momentum. What is Momentum? Momentum – tendency of objects to keep going in the same direction with the same speed –Depends on mass and velocity –Has.
MOMENTUM! Momentum Impulse Conservation of Momentum.
MOMENTUM! Momentum Impulse Conservation of Momentum in 1 Dimension
Momentum and Collisions Linear Momentum The linear momentum of a particle or an object that can be modeled as a particle of mass m moving with a velocity.
Momentum pg. 29. Objectives Calculate the momentum of an object. Identify the units of momentum. Calculate the momentum of a physical system consisting.
Linear Momentum. 5-1 Linear Momentum Linear Momentum, p – defined as mass x velocity The unit is kgm/s A quantity used in collisions So a small object.
MOMENTUM! Momentum Impulse Conservation of Momentum in 1 Dimension
Objectives Students should be able to: 1. Define linear momentum and calculate it. 2. Define and calculate impulse and apply it in the relationship, FΔt.
MOMENTUM! Momentum Impulse Conservation of Momentum in 1 Dimension
Momentum  Momentum is a property of moving matter.  Momentum describes the tendency of objects to keep going in the same direction with the same speed.
Physics Unit 5: Momentum and Collisions Topic 5.1 – Momentum and Impulse Topic 5.2 – Elastic Collisions Topic 5.3 – Inelastic Collisions Topic 5.1 – Momentum.
Agenda Aim: SWBAT recognize kinetic energy is related to momentum by the end of today’s lesson. Tasks: Kinetic Energy and Momentum PPT notes Example Problems.
PHY 101: Lecture The Impulse-Momentum Theorem 7.2 The Principle of Conservation of Linear Momentum 7.3 Collision in One Dimension 7.4 Collisions.
Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Section 1 Momentum and Impulse Chapter 6 Linear Momentum Momentum.
12.1 Momentum. Chapter 12 Objectives  Calculate the linear momentum of a moving object given the mass and velocity.  Describe the relationship between.
Ch.9 Momentum and Its Conservation. 9.1 Impulse and Momentum Momentum (p): the product of the mass (m) of an object and its velocity (v) p = mv An object.
What is momentum? We say the Packers have momentum entering the final weeks of the season… Anything that is moving has momentum.
Momentum.
Unit 5 Momentum Impulse Impulse Changes Momentum Bouncing
Momentum and Collisions
Name 3 vectors and 3 scalars.
Linear Momentum and Collisions
Momentum.
12.1 Momentum Momentum is a property of moving matter.
Momentum Physics.
Chapter 6: Momentum 12.1 Momentum
Impulse and Momentum AP Physics B.
Chapter 12: Momentum 12.1 Momentum
Momentum and Impulse Chapter 9.
Momentum.
Inv 12.3 Angular Momentum Investigation Key Question:
Momentum.
MOMENTUM! Momentum Impulse Conservation of Momentum in 1 Dimension
AS-Level Maths: Mechanics 1 for Edexcel
Impulse and Momentum.
MOMENTUM! Momentum Impulse Conservation of Momentum in 1 Dimension
Presentation transcript:

MOMENTUM! Momentum Impulse Conservation of Momentum in 1 Dimension Conservation of Momentum in 2 Dimensions Angular Momentum Torque Moment of Inertia

Momentum Facts p = m v Momentum is a vector quantity! Velocity and momentum vectors point in the same direction. SI unit for momentum: kg · m /s (no special name). Momentum is a conserved quantity (this will be proven later). A net force is required to change a body’s momentum. Momentum describes the tendency of a mass to keep going in the same direction with the same speed. Something big and slow could have the same momentum as something small and fast.

Momentum and Inertia Inertia is another property of mass that resists changes in velocity; however, inertia depends only on mass. Inertia is a scalar quantity. Momentum is a property of moving mass that resists changes in a moving object’s velocity. Momentum is a vector quantity.

Vocabulary angular momentum collision law of conservation of momentum elastic collision gyroscope impulse inelastic collision linear momentum momentum

Momentum The momentum of a ball depends on its mass and velocity. Ball B has more momentum than ball A.

Momentum Ball A is 1 kg moving 1m/sec, Ball B is 1kg at 3 m/sec. If a 1 N force is applied to deflect each ball's motion. What happens? Does the force deflect both balls equally?  Ball B deflects much less than ball A when the same force is applied because ball B had a greater initial momentum.

Calculating Momentum  The momentum of a moving object is its mass multiplied by its velocity.  That means momentum increases with both mass and velocity. Velocity (m/sec) Mass (kg) Momentum (kg m/sec) p = m v

1.You are asked for momentum. 2.You are given masses and velocities. 3.Use: p = m v 4.Solve for car: p = (1,300 kg) (13.5 m/s) = 17,550 kg m/s 5.Solve for cycle: p = (350 kg) (30 m/s) = 10,500 kg m/s 1.The car has more momentum even though it is going much slower. Comparing momentum A car is traveling at a velocity of 13.5 m/sec (30 mph) north on a straight road. The mass of the car is 1,300 kg. A motorcycle passes the car at a speed of 30 m/sec (67 mph). The motorcycle (with rider) has a mass of 350 kg. Calculate and compare the momentum of the car and motorcycle.

Momenta Bus: m = 9000 kg; v = 16 m /s p = 144, 000 kg · m /s Train: m = 3.6 ·10 4 kg; v = 4 m /s p = 144,000 kg · m /s Car: m = 1800 kg; v = 80 m /s p = 144, 000 kg · m /s

Do Momentum Problems

Angular Momentum linear momentum. Momentum resulting from an object moving in linear motion is called linear momentum. angular momentum Momentum resulting from the rotation (or spin) of an object is called angular momentum.

Conservation of Angular Momentum Angular momentum is important because it obeys a conservation law, as does linear momentum. The total angular momentum of a closed system stays the same.

Calculating Angular Momentum Angular momentum is calculated in a similar way to linear momentum, except the mass and velocity are replaced by the moment of inertia and angular velocity. Angular velocity (rad/sec) Angular momentum (kg m/sec 2 ) L = I  Moment of inertia (kg m 2 )

Calculating Angular Momentum The moment of inertia of an object is the average of mass times radius squared for the whole object. Since the radius is measured from the axis of rotation, the moment of inertia depends on the axis of rotation.

Gyroscopes Angular Momentum A gyroscope is a device that contains a spinning object with a lot of angular momentum. Gyroscopes can do amazing tricks because they conserve angular momentum. For example, a spinning gyroscope can easily balance on a pencil point.

Gyroscopes A gyroscope on the space shuttle is mounted at the center of mass, allowing a computer to measure rotation of the spacecraft in three dimensions. An on-board computer is able to accurately measure the rotation of the shuttle and maintain its orientation in space.

Comparison: Linear & Angular Momentum Linear Momentum, p Tendency for a mass to continue moving in a straight line. Parallel to v. A conserved, vector quantity. Magnitude is inertia (mass) times speed. Net force required to change it. The greater the mass, the greater the force needed to change momentum. Angular Momentum, L Tendency for a mass to continue rotating. Perpendicular to both v and r. A conserved, vector quantity. Magnitude is rotational inertia times angular speed. Net torque required to change it. The greater the moment of inertia, the greater the torque needed to change angular momentum.

Impulse

Impulse Defined F = ma a = ∆v/t F = m∆v/t Ft = m∆v (kg m/s 2 )s = kg m/s.

Stopping Time F t = F t

Impulse

Impulse F t = ∆mv

Impulse F t= ∆mv

Do Impulse Problems

Conservation of Momentum The law of conservation of momentum states when a system of interacting objects is not influenced by outside forces (like friction), the total momentum of the system cannot change. If you throw a rock forward from a skateboard, you will move backward in response.

Collisions in One Dimension A collision occurs when two or more objects hit each other. During a collision, momentum is transferred from one object to another. Collisions can be elastic or inelastic.

Collisions

Conservation of Momentum in 1-D Whenever two objects collide (or when they exert forces on each other without colliding, such as gravity) momentum of the system (both objects together) is conserved. This mean the total momentum of the objects is the same before and after the collision. before: p = m 1 v 1 - m 2 v 2 after: p = - m 1 v a + m 2 v b m1m1 m2m2 v1v1 v2v2 (Choosing right as the + direction, m 2 has - momentum.) m1m1 m2m2 vava vbvb m 1 v 1 - m 2 v 2 = - m 1 v a + m 2 v b

Elastic collisions Two kg billiard balls roll toward each other and collide head-on. Initially, the 5-ball has a velocity of 0.5 m/s. The 10-ball has an initial velocity of -0.7 m/s. The collision is elastic and the 10- ball rebounds with a velocity of 0.4 m/s, reversing its direction. What is the velocity of the 5-ball after the collision?

You are asked for 10-ball’s velocity after collision. You are given mass, initial velocities, 5-ball’s final velocity. Diagram the motion, use m 1 v 1 + m 2 v 2 = m 1 v 3 + m 2 v 4 Solve for V 3 : (0.165 kg)(0.5 m/s) + (0.165 kg) (-0.7 kg)=(0.165 kg) v 3 + (0.165 kg) (0.4 m/s) V 3 = -0.6 m/s Elastic Collisions

Directions after a collision On the last slide the boxes were drawn going in the opposite direction after colliding. This isn’t always the case. For example, when a bat hits a ball, the ball changes direction, but the bat doesn’t. It doesn’t really matter, though, which way we draw the velocity vectors in “after” picture. If we solved the conservation of momentum equation (red box) for v b and got a negative answer, it would mean that m 2 was still moving to the left after the collision. As long as we interpret our answers correctly, it matters not how the velocity vectors are drawn. m 1 v 1 - m 2 v 2 = - m 1 v a + m 2 v b m1m1 m2m2 v1v1 v2v2 m1m1 m2m2 vava vbvb

Sample Problem before after 3 kg 15 kg 10 m/s 6 m/s 3 kg 15 kg 4.5 m/s v A crate of raspberry donut filling collides with a tub of lime Kool Aid on a frictionless surface. Which way on how fast does the Kool Aid rebound? answer: Let’s draw v to the right in the after picture. 3 (10) - 6 (15) = -3 (4.5) + 15 v v = -3.1 m/s Since v came out negative, we guessed wrong in drawing v to the right, but that’s OK as long as we interpret our answer correctly. After the collision the lime Kool Aid is moving 3.1 m/s to the left.

Sample Problem 1 7 kg v = m/s A rifle fires a bullet into a giant slab of butter on a frictionless surface. The bullet penetrates the butter, but while passing through it, the bullet pushes the butter to the left, and the butter pushes the bullet just as hard to the right, slowing the bullet down. If the butter skids off at 4 cm/s after the bullet passes through it, what is the final speed of the bullet? (The mass of the rifle matters not.) 35 g 7 kg v = ? 35 g 4 cm/s continued on next slide

Sample Problem 1 (cont.) 7 kg v = m/s 35 g 7 kg v = ? 35 g 4 cm/s p before = 7 (0) + (0.035) (700) = 24.5 kg · m /s Let’s choose left to be the + direction & use conservation of momentum, converting all units to meters and kilograms. p after = 7 (0.04) v = v p before = p after 24.5 = v v = 692 m/s v came out positive. This means we chose the correct direction of the bullet in the “after” picture.

Inelastic Collisions A train car moving to the right at 10 m/s collides with a parked train car. They stick together and roll along the track. If the moving car has a mass of 8,000 kg and the parked car has a mass of 2,000 kg, what is their combined velocity after the collision? You are asked for the final velocity. You are given masses, and initial velocity of moving train car.

Diagram the problem Use m 1 v 1 + m 2 v 2 = (m 1 v 1 +m 2 v 2 ) v 3 Solve for v 3 = m 1 v 1 + m 2 v 2 (m 1 v 1 +m 2 v 2 ) v 3 = (8,000 kg)(10 m/s) + (2,000 kg)(0 m/s) (8, ,000 kg) v 3 = 8 m/s The train cars moving together to right at 8 m/s. Inelastic Collisions

Sample Problem 2 7 kg v = m/s 35 g Same as the last problem except this time it’s a block of wood rather than butter, and the bullet does not pass all the way through it. How fast do they move together after impact? v kg (0.035) (700) = v v = 3.48 m/s Note: Once again we’re assuming a frictionless surface, otherwise there would be a frictional force on the wood in addition to that of the bullet, and the “system” would have to include the table as well.

Bouncing Alfred went on a date with Mabel. When Alfred dropped off Mabel after the date, he was anxious to play Angry Birds, so he forgot to kiss her on the cheek good night. She went up to her room, opened the window and threw a flower pot at Alfred. On of three things could happen. 1. The flower pot – head collision is elastic 2. The flower pot – head collision is inelastic 3. The flower pot bounces off his head Which will hurt more?????

Elastic Collision BeforeAfter

Elastic Collision Alfred + Flower pot = Alfred + Flower pot m 1 v 1 + m 2 v 2 = m 1 v 3 + m 2 v 4 100kg(0m/s) + 10kg (15 m/s) = 100kg (v 3 ) + 10kg (0m/s) 150kgm/s = 100kg (v 3 ) 100kg 1.5 m/s = v 3 (elastic)

Inelastic Collision BeforeAfter

Inelastic Collision Alfred + Flower pot = (Alfred + Flower pot) m 1 v 1 + m 2 v 2 = (m 1 + m 2 )v 3 100kg(0m/s) + 10kg(15 m/s) = (100kg + 10kg) (v 3 ) 150kgm/s = 110kg(v 3 ) 110kg 1.36 m/s = v 3 (inelastic) 1.5 m/s = v 3 (elastic)

Bouncing

Elastic Collision Alfred + Flower pot = Alfred + Flower pot m 1 v 1 + m 2 v 2 = m 1 v 3 + m 2 v 4 100kg(0m/s) + 10kg(15 m/s) = 100kg(v 3 ) + 10kg(-5m/s) 150kgm/s = 100kg(v 3 ) – 50kgm/s 200kgm/s = 100kg(v 3 ) 100kg 2.0 m/s = v 3 (bouncing) 1.5 m/s = v 3 (elastic) 1.36 m/s = v 3 (inelastic)

Do Collision Problems