For Friday No reading Homework: –Chapter 9, exercise 4 (This is VERY short – do it while you’re running your tests) Make sure you keep variables and constants.

Slides:



Advertisements
Similar presentations
Artificial Intelligence 8. The Resolution Method
Advertisements

Some Prolog Prolog is a logic programming language
Logic Inference CMSC 471 Chapter 7.5, 9 Chuck Dyer, and Lise Getoor
Resolution Proof System for First Order Logic
First-Order Logic.
Inference Rules Universal Instantiation Existential Generalization
Knowledge & Reasoning Logical Reasoning: to have a computer automatically perform deduction or prove theorems Knowledge Representations: modern ways of.
Standard Logical Equivalences
Resolution.
ITCS 3153 Artificial Intelligence Lecture 15 First-Order Logic Chapter 9 Lecture 15 First-Order Logic Chapter 9.
First Order Logic Resolution
Inference and Reasoning. Basic Idea Given a set of statements, does a new statement logically follow from this. For example If an animal has wings and.
We have seen that we can use Generalized Modus Ponens (GMP) combined with search to see if a fact is entailed from a Knowledge Base. Unfortunately, there.
Methods of Proof Chapter 7, second half.. Proof methods Proof methods divide into (roughly) two kinds: Application of inference rules: Legitimate (sound)
Logic Use mathematical deduction to derive new knowledge.
13 Automated Reasoning 13.0 Introduction to Weak Methods in Theorem Proving 13.1 The General Problem Solver and Difference Tables 13.2 Resolution.
Methods of Proof Chapter 7, Part II. Proof methods Proof methods divide into (roughly) two kinds: Application of inference rules: Legitimate (sound) generation.
Logic CPSC 386 Artificial Intelligence Ellen Walker Hiram College.
Logic.
Predicate Calculus Russell and Norvig: Chapter 8,9.
Artificial Intelligence Chapter 14. Resolution in the Propositional Calculus Artificial Intelligence Chapter 14. Resolution in the Propositional Calculus.
RESOLUTION: A COMPLETE INFERENCE PROCEDURE. I Then we certainly want to be able to conclude S(A); S(A) is true if S(A) or R(A) is true, and one of those.
Outline Recap Knowledge Representation I Textbook: Chapters 6, 7, 9 and 10.
Formal Logic Proof Methods Direct Proof / Natural Deduction Conditional Proof (Implication Introduction) Reductio ad Absurdum Resolution Refutation.
Proof methods Proof methods divide into (roughly) two kinds: –Application of inference rules Legitimate (sound) generation of new sentences from old Proof.
Inference in FOL Copyright, 1996 © Dale Carnegie & Associates, Inc. Chapter 9 Spring 2004.
Inference in FOL Copyright, 1996 © Dale Carnegie & Associates, Inc. Chapter 9.
1 Automated Reasoning Introduction to Weak Methods in Theorem Proving 13.1The General Problem Solver and Difference Tables 13.2Resolution Theorem.
Inference and Resolution for Problem Solving
Methods of Proof Chapter 7, second half.
Knoweldge Representation & Reasoning
Chapter 3 Propositional Logic
Inference in FOL Copyright, 1996 © Dale Carnegie & Associates, Inc. Chapter 9 Fall 2004.
Inference in FOL Copyright, 1996 © Dale Carnegie & Associates, Inc. Chapter 9 Spring 2005.
Start with atomic sentences in the KB and apply Modus Ponens, adding new atomic sentences, until “done”.
CS1502 Formal Methods in Computer Science Lecture Notes 10 Resolution and Horn Sentences.
Propositional Logic Reasoning correctly computationally Chapter 7 or 8.
INFERENCE IN FIRST-ORDER LOGIC IES 503 ARTIFICIAL INTELLIGENCE İPEK SÜĞÜT.
Proof Systems KB |- Q iff there is a sequence of wffs D1,..., Dn such that Dn is Q and for each Di in the sequence: a) either Di is in KB or b) Di can.
Propositional Resolution Computational LogicLecture 4 Michael Genesereth Spring 2005.
Inference in First-Order logic Department of Computer Science & Engineering Indian Institute of Technology Kharagpur.
For Wednesday Read chapter 10 Prolog Handout 4. Exam 1 Monday Take home due at the exam.
Conjunctive normal form: any formula of the predicate calculus can be transformed into a conjunctive normal form. Def. A formula is said to be in conjunctive.
Logical Agents Logic Propositional Logic Summary
1 Knowledge Representation. 2 Definitions Knowledge Base Knowledge Base A set of representations of facts about the world. A set of representations of.
ARTIFICIAL INTELLIGENCE [INTELLIGENT AGENTS PARADIGM] Professor Janis Grundspenkis Riga Technical University Faculty of Computer Science and Information.
Unification Algorithm Input: a finite set Σ of simple expressions Output: a mgu for Σ (if Σ is unifiable) 1. Set k = 0 and  0 = . 2. If Σ  k is a singleton,
For Monday Read “lectures” 6,9-12 of Learn Prolog Now: saarland.de/~kris/learn-prolog-now/ saarland.de/~kris/learn-prolog-now/
CS Introduction to AI Tutorial 8 Resolution Tutorial 8 Resolution.
Logical Agents Chapter 7. Knowledge bases Knowledge base (KB): set of sentences in a formal language Inference: deriving new sentences from the KB. E.g.:
Automated Reasoning Early AI explored how to automated several reasoning tasks – these were solved by what we might call weak problem solving methods as.
Automated Reasoning Early AI explored how to automate several reasoning tasks – these were solved by what we might call weak problem solving methods as.
For Monday Read “lectures” 1-5 of Learn Prolog Now: prolog-now/
© Copyright 2008 STI INNSBRUCK Intelligent Systems Propositional Logic.
For Wednesday Finish reading chapter 10 – can skip chapter 8 No written homework.
Dr. Shazzad Hosain Department of EECS North South Universtiy Lecture 04 – Part B Propositional Logic.
For Wednesday No reading Prolog handout 2 Chapter 9, exercise 4.
Logical Agents Chapter 7. Outline Knowledge-based agents Propositional (Boolean) logic Equivalence, validity, satisfiability Inference rules and theorem.
Proof Methods for Propositional Logic CIS 391 – Intro to Artificial Intelligence.
For Friday Finish chapter 9 Program 1 due. Program 1 Any questions?
For Wednesday No reading Homework: –Chapter 8, exercise 24.
Logical Agents. Outline Knowledge-based agents Logic in general - models and entailment Propositional (Boolean) logic Equivalence, validity, satisfiability.
Resolution in the Propositional Calculus
For Monday Read Prolog handout 4 Homework:
Logical Inference: Through Proof to Truth
For Monday Read chapter 10, sections 1-3 Prolog handout 4
Biointelligence Lab School of Computer Sci. & Eng.
CS 416 Artificial Intelligence
Methods of Proof Chapter 7, second half.
RESOLUTION.
Presentation transcript:

For Friday No reading Homework: –Chapter 9, exercise 4 (This is VERY short – do it while you’re running your tests) Make sure you keep variables and constants straight Program 1 due

Program 1 Any questions?

Backward Chaining Start from query or atomic sentence to be proven and look for ways to prove it. Query can contain variables which are assumed to be existentially quantified. Sibling(x,John) ? Father(x,y) ? Inference process should return all sets of variable bindings that satisfy the query.

Method First try to answer query by unifying it to all possible facts in the KB. Next try to prove it using a rule whose consequent unifies with the query and then try to recursively prove all of its antecedents. Given a conjunction of queries, first get all possible answers to the first conjunct and then for each resulting substitution try to prove all of the remaining conjuncts. Assume variables in rules are renamed (standardized apart) before each use of a rule.

Backchaining Examples KB: 1) Parent(x,y)  Male(x)  Father(x,y) 2) Father(x,y)  Father(x,z)  Sibling(y,z) 3) Parent(Tom,John) 4) Male(Tom) 7) Parent(Tom,Fred) Query: Parent(Tom,x) Answers: ( {x/John}, {x/Fred})

Query: Father(Tom,s) Subgoal: Parent(Tom,s)  Male(Tom) {s/John} Subgoal: Male(Tom) Answer: {s/John} {s/Fred} Subgoal: Male(Tom) Answer: {s/Fred} Answers: ({s/John}, {s/Fred})

Query: Father(f,s) Subgoal: Parent(f,s)  Male(f) {f/Tom, s/John} Subgoal: Male(Tom) Answer: {f/Tom, s/John} {f/Tom, s/Fred} Subgoal: Male(Tom) Answer: {f/Tom, s/Fred} Answers: ({f/Tom,s/John}, {f/Tom,s/Fred})

Query: Sibling(a,b) Subgoal: Father(f,a)  Father(f,b) {f/Tom, a/John} Subgoal: Father(Tom,b) {b/John} Answer: {f/Tom, a/John, b/John} {b/Fred} Answer: {f/Tom, a/John, b/Fred} {f/Tom, a/Fred} Subgoal: Father(Tom,b) {b/John} Answer: {f/Tom, a/Fred, b/John} {b/Fred} Answer: {f/Tom, a/Fred, b/Fred} Answers: ({f/Tom, a/John, b/John},{f/Tom, a/John, b/Fred} {f/Tom, a/Fred, b/John}, {f/Tom, a/Fred, b/Fred})

Incompleteness Rule­based inference is not complete, but is reasonably efficient and useful in many circumstances. Still can be exponential or not terminate in worst case. Incompleteness example: P(x)  Q(x) ¬P(x)  R(x) (not Horn) Q(x)  S(x) R(x)  S(x) –Entails S(A) for any constant A but is not inferable from modus ponens

Completeness In 1930 GÖdel showed that a complete inference procedure for FOPC existed, but did not demonstrate one (non­constructive proof). In 1965, Robinson showed a resolution inference procedure that was sound and complete for FOPC. However, the procedure may not halt if asked to prove a thoerem that is not true, it is said to be semidecidable. If a conclusion C is entailed by the KB then the procedure will eventually terminate with a proof. However if it is not entailed, it may never halt. It does not follow that either C or ¬C is entailed by a KB (may be independent). Therefore trying to prove both a conjecture and its negation does not help. Inconsistency of a KB is also semidecidable.

Resolution Propositional version. {a  b, ¬b  c} |- a  c OR {¬a  b, b  c} |- ¬a  c Reasoning by cases OR transitivity of implication First­order form –For two literals p j and q k in two clauses p 1 ... p j...  p m q 1 ... q k...  q n such that  =UNIFY(p j, ¬q k ), derive SUBST( , p 1 ...p j­1  p j+1...  p m  q 1 ...q k­1 q k+1...  q n )

Implication form Can also be viewed in implicational form where all negated literals are in a conjunctive antecedent and all positive literals in a disjunctive conclusion. ¬p 1 ...  ¬p m  q 1 ...  q n  p 1 ...  p m  q 1 ...  q n

Conjunctive Normal Form (CNF) For resolution to apply, all sentences must be in conjunctive normal form, a conjunction of disjunctions of literals (a 1 ...  a m )  (b 1 ...  b n ) .....  (x 1 ...  x v ) Representable by a set of clauses (disjunctions of literals) Also representable as a set of implications (INF).

Example Initial CNF INF P(x)  Q(x) ¬P(x)  Q(x) P(x)  Q(x) ¬P(x)  R(x) P(x)  R(x) True  P(x)  R(x) Q(x)  S(x) ¬Q(x)  S(x) Q(x)  S(x) R(x)  S(x) ¬R(x)  S(x) R(x)  S(x)

Resolution Proofs INF (CNF) is more expressive than Horn clauses. Resolution is simply a generalization of modus ponens. As with modus ponens, chains of resolution steps can be used to construct proofs. Factoring removes redundant literals from clauses –S(A)  S(A) -> S(A)

Sample Proof P(w)  Q(w) Q(y)  S(y) {y/w} P(w)  S(w) True  P(x)  R(x) {w/x} True  S(x)  R(x) R(z)  S(z) {x/A, z/A} True  S(A)

Refutation Proofs Unfortunately, resolution proofs in this form are still incomplete. For example, it cannot prove any tautology (e.g. P  ¬P) from the empty KB since there are no clauses to resolve. Therefore, use proof by contradiction (refutation, reductio ad absurdum). Assume the negation of the theorem P and try to derive a contradiction (False, the empty clause). –(KB  ¬P  False)  KB  P

Sample Proof P(w)  Q(w) Q(y)  S(y) {y/w} P(w)  S(w) True  P(x)  R(x) {w/x} True  S(x)  R(x) R(z)  S(z) {z/x} S(A)  False True  S(x) {x/A} False

Resolution Theorem Proving Convert sentences in the KB to CNF (clausal form) Take the negation of the proposed theorem (query), convert it to CNF, and add it to the KB. Repeatedly apply the resolution rule to derive new clauses. If the empty clause (False) is eventually derived, stop and conclude that the proposed theorem is true.

Conversion to Clausal Form Eliminate implications and biconditionals by rewriting them. p  q -> ¬p  q p  q ­> (¬p  q)  (p  ¬q) Move ¬ inward to only be a part of literals by using deMorgan's laws and quantifier rules. ¬(p  q) -> ¬p  ¬q ¬(p  q) -> ¬p  ¬q ¬  x p ->  x ¬p ¬  x p ->  x ¬p ¬¬p -> p

Conversion continued Standardize variables to avoid use of the same variable name by two different quantifiers.  x P(x)   x P(x) ->  x 1 P(x 1 )  x 2 P(x 2 ) Move quantifiers left while maintaining order. Renaming above guarantees this is a truth­preserving transformation.  x 1 P(x 1 )  x 2 P(x 2 ) ->  x 1  x 2 (P(x 1 )  P(x 2 ))

Conversion continued Skolemize: Remove existential quantifiers by replacing each existentially quantified variable with a Skolem constant or Skolem function as appropriate. –If an existential variable is not within the scope of any universally quantified variable, then replace every instance of the variable with the same unique constant that does not appear anywhere else.  x (P(x)  Q(x)) -> P(C 1 )  Q(C 1 ) –If it is within the scope of n universally quantified variables, then replace it with a unique n­ary function over these universally quantified variables.  x 1  x 2 (P(x 1 )  P(x 2 )) ->  x 1 (P(x 1 )  P(f 1 (x 1 )))  x(Person(x)   y(Heart(y)  Has(x,y))) ->  x(Person(x)  Heart(HeartOf(x))  Has(x,HeartOf(x))) –Afterwards, all variables can be assumed to be universally quantified, so remove all quantifiers.

Conversion continued Distribute  over  to convert to conjunctions of clauses (a  b)  c -> (a  c)  (b  c) (a  b)  (c  d) -> (a  c)  (b  c)  (a  d)  (b  d) –Can exponentially expand size of sentence. Flatten nested conjunctions and disjunctions to get final CNF (a  b)  c -> (a  b  c) (a  b)  c -> (a  b  c) Convert clauses to implications if desired for readability (¬a  ¬b  c  d) -> a  b  c  d

Sample Clause Conversion  x((Prof(x)  Student(x))   y(Class(y)  Has(x,y))   y(Book(y)  Has(x,y))))  x(¬(Prof(x)  Student(x))   y(Class(y)  Has(x,y))   y(Book(y)  Has(x,y))))  x((¬Prof(x)  ¬Student(x))  (  y(Class(y)  Has(x,y))   y(Book(y)  Has(x,y))))  x((¬Prof(x)  ¬Student(x))  (  y(Class(y)  Has(x,y))   z(Book(z)  Has(x,z))))  x  y  z((¬Prof(x)  ¬Student(x))  ((Class(y)  Has(x,y))  (Book(z)  Has(x,z)))) (¬Prof(x)  ¬Student(x))  (Class(f(x))  Has(x,f(x))  Book(g(x))  Has(x,g(x))))

Clause Conversion (¬Prof(x)  ¬Student(x))  (Class(f(x))  Has(x,f(x))  Book(g(x))  Has(x,g(x)))) (¬Prof(x)  Class(f(x)))  (¬Prof(x)  Has(x,f(x)))  (¬Prof(x)  Book(g(x)))  (¬Prof(x)  Has(x,g(x)))  (¬Student(x)  Class(f(x)))  (¬Student(x)  Has(x,f(x)))  (¬Student(x)  Book(g(x)))  (¬Student(x)  Has(x,g(x))))

Sample Resolution Problem Jack owns a dog. Every dog owner is an animal lover. No animal lover kills an animal. Either Jack or Curiosity killed Tuna the cat. Did Curiosity kill the cat?

In Logic Form A)  x Dog(x)  Owns(Jack,x) B)  x (  y Dog(y)  Owns(x,y))  AnimalLover(x)) C)  x AnimalLover(x)  (  y Animal(y)  ¬Kills(x,y)) D) Kills(Jack,Tuna)  Kills(Cursiosity,Tuna) E) Cat(Tuna) F)  x(Cat(x)  Animal(x)) Query: Kills(Curiosity,Tuna)

In Normal Form A1) Dog(D) A2) Owns(Jack,D) B) Dog(y)  Owns(x,y)  AnimalLover(x) C) AnimalLover(x)  Animal(y)  Kills(x,y)  False D) Kills(Jack,Tuna)  Kills(Curiosity,Tuna) E) Cat(Tuna) F) Cat(x)  Animal(x) Query: Kills(Curiosity,Tuna)  False

Resolution Proof