Dirac’s Positron By Arpan Saha, Engineering Physics with Nanoscience, IIT-Bombay Arpan Saha, Sophomore, IITB, Engineering Physics with Nanoscience Friday,

Slides:



Advertisements
Similar presentations
From Quantum Mechanics to Lagrangian Densities
Advertisements

Jørgen Beck Hansen Particle Physics Basic concepts Particle Physics.
The Quantum Mechanics of Simple Systems
Unit 12: Part 3 Quantum Mechanics and Atomic Physics.
The electromagnetic (EM) field serves as a model for particle fields
Integrals over Operators
Quantum One: Lecture 4. Schrödinger's Wave Mechanics for a Free Quantum Particle.
Quantum One: Lecture 3. Implications of Schrödinger's Wave Mechanics for Conservative Systems.
Quantum Chemistry Revisited Powerpoint Templates.
1 Open Questions in Physics Tareq Ahmed Research Assistant Physics Department, KFUPM. 7, Jan
The Klein-Gordon Equation
Wavefunction Quantum mechanics acknowledges the wave-particle duality of matter by supposing that, rather than traveling along a definite path, a particle.
X y z z′ R (  1,  2,  3 ) = 11 y′ 11 =x′ 22 22 22 x′′ z′′ =y′′ 33 y′′′ z′′′ = x′′′ 33 33.
The electromagnetic (EM) field serves as a model for particle fields  = charge density, J = current density.
Quantum Mechanics Classical – non relativistic Quantum Mechanical : Schrodinger eq.
PHYS Quantum Mechanics PHYS Quantum Mechanics Dr Jon Billowes Nuclear Physics Group (Schuster Building, room 4.10)
PHYS Quantum Mechanics PHYS Quantum Mechanics Dr Gavin Smith Nuclear Physics Group These slides at:
The Klein Gordon equation (1926) Scalar field (J=0) :
+ } Relativistic quantum mechanics. Special relativity Space time pointnot invariant under translations Space-time vector Invariant under translations.
The Photoelectric Effect
Spin and addition of angular momentum
Chapter 3 Formalism. Hilbert Space Two kinds of mathematical constructs - wavefunctions (representing the system) - operators (representing observables)
Schrödinger We already know how to find the momentum eigenvalues of a system. How about the energy and the evolution of a system? Schrödinger Representation:
4. The Postulates of Quantum Mechanics 4A. Revisiting Representations
Physics 334 Modern Physics Credits: Material for this PowerPoint was adopted from Rick Trebino’s lectures from Georgia Tech which were based on the textbook.
States, operators and matrices Starting with the most basic form of the Schrödinger equation, and the wave function (  ): The state of a quantum mechanical.
Physics 3 for Electrical Engineering
The World Particle content All the particles are spin ½ fermions!
QM Foundations of Particle Physics QM Foundations of Particle Physics Chris Parkes April/May 2003  Hydrogen atom Quantum numbers Electron intrinsic spin.
Quantum Mechanics (14/2) CH. Jeong 1. Bloch theorem The wavefunction in a (one-dimensional) crystal can be written in the form subject to the condition.

Ch 3 Quantum Mechanics of Electrons EE 315/ECE 451 N ANOELECTRONICS I.
Quantum theory of spin: algebraic approach in analogy with classical physics, we believe that a spinning mass carries intrinsic angular momentum, along.
Fundamental principles of particle physics Our description of the fundamental interactions and particles rests on two fundamental structures :
Wednesday, Feb. 28, 2007PHYS 5326, Spring 2007 Jae Yu 1 PHYS 5326 – Lecture #9 Wednesday, Feb. 28, 2007 Dr. Jae Yu 1.Quantum Electro-dynamics (QED) 2.Local.
6.852: Distributed Algorithms Spring, 2008 April 1, 2008 Class 14 – Part 2 Applications of Distributed Algorithms to Diverse Fields.
For s=1 for EM-waves total energy density:  # of photons wave number vector: the Klein-Gordon equation:
مدرس المادة الدكتور :…………………………
Wednesday, Mar. 5, 2003PHYS 5326, Spring 2003 Jae Yu 1 PHYS 5326 – Lecture #13 Wednesday, Mar. 5, 2003 Dr. Jae Yu Local Gauge Invariance and Introduction.
The Quantum Theory of Atoms and Molecules The Schrödinger equation and how to use wavefunctions Dr Grant Ritchie.
1 Qubits, time and the equations of physics Salomon S. Mizrahi Departamento de Física, CCET, Universidade Federal de São Carlos Time and Matter October.
PHYS 773: Quantum Mechanics February 6th, 2012
1 MODELING MATTER AT NANOSCALES 4. Introduction to quantum treatments Outline of the principles and the method of quantum mechanics.
P Spring 2002 L4Richard Kass Conservation Laws When something doesn’t happen there is usually a reason! Read: M&S Chapters 2, 4, and 5.1, That something.
Klein Paradox Contents An Overview Klein Paradox and Klein Gordon equation Klein Paradox and Dirac equation Further investigation.
Superconductivity and Superfluidity Landau Theory of Phase Transitions Lecture 5 As a reminder of Landau theory, take the example of a ferromagnetic to.
Chapter 3 Postulates of Quantum Mechanics. Questions QM answers 1) How is the state of a system described mathematically? (In CM – via generalized coordinates.
An equation for matter waves Seem to need an equation that involves the first derivative in time, but the second derivative in space As before try solution.
3.1 Discovery of the X-Ray and the Electron 3.2Determination of Electron Charge 3.3Line Spectra 3.4Quantization 3.5Blackbody Radiation 3.6Photoelectric.
1924: de Broglie suggests particles are waves Mid-1925: Werner Heisenberg introduces Matrix Mechanics In 1927 he derives uncertainty principles Late 1925:
Fundamental principles of particle physics Our description of the fundamental interactions and particles rests on two fundamental structures :
The Quantum Theory of Atoms and Molecules
Relativistic Quantum Mechanics
Schrodinger wave equation
UNIT 1 Quantum Mechanics.
Handout 2 : The Dirac Equation
Chapter III Dirac Field Lecture 2 Books Recommended:
Relativistic Quantum Mechanics
Formalism Chapter 3.
Relativistic Quantum Mechanics
Schrödinger Theory of the Electronic Structure of Matter from a ‘Newtonian’ Perspective Viraht Sahni.
Quantum One.
Schrodinger Equation The equation describing the evolution of Ψ(x,t) is the Schrodinger equation Given suitable initial conditions (Ψ(x,0)) Schrodinger’s.
Quantum One.
Spin and Magnetic Moments (skip sect. 10-3)
Developing Wave Equations
It means anything not quadratic in fields and derivatives.
Chapter III Dirac Field Lecture 4 Books Recommended:
Relativistic Quantum Mechanics
Relativistic Quantum Mechanics
Presentation transcript:

Dirac’s Positron By Arpan Saha, Engineering Physics with Nanoscience, IIT-Bombay Arpan Saha, Sophomore, IITB, Engineering Physics with Nanoscience Friday, November 5,

An overview One of the many achievements of Paul Adrian Maurice Dirac, had been to predict the existence of positrons. Over the course of these slides, we will be examining how he successfully posited an equation for the dynamics of an electron that was both consistent with special relativity as well as quantum mechanics. And so we shall see how in the process, he was inevitably led to the conclusion that positrons exist. Arpan Saha, Sophomore, IITB, Engineering Physics with Nanoscience, Friday, November 5,

Topics of Discussion The Dirac Equation Lorentz Covariance of Dirac Probability Conservation Solutions of Dirac Negative energies? A way out? The Positron Concluding Remarks Arpan Saha, Sophomore, IITB, Engineering Physics with Nanoscience, Friday, November 5, Skobeltsyn's Mysterious Particle Schrodinger’s Equation The Hamiltonian Operator Relativistic Limits 4-Momentum Revisiting the Hamiltonian The Klein-Gordon Equation Issues with Klein-Gordon Dirac’s Insight We shall be taking up the following topics:

Skobeltsyn’s Mysterious Particle In 1923, Dmitri Skobeltsyn, a Soviet physicist then working in St. Petersburg University, Leningrad, observed a particle in his bubble chamber that had all the attributes of the electron, except that it had the opposite charge. The same observations was reported in 1929 by Chung-Yao Chao, a grad student at Caltech while he was working with gamma radiation. Arpan Saha, Sophomore, IITB, Engineering Physics with Nanoscience, Friday, November 5,

Skobeltsyn’s Mysterious Particle Having never observed such a particle before they remain baffled as to what it was. To answer this we’ll need to start with Schrödinger's discovery of the eponymous equation in his 1926 paper Quantization as an Eigenvalue problem. Arpan Saha, Sophomore, IITB, Engineering Physics with Nanoscience, Friday, November 5,

Schrodinger's Equation Schrödinger, building on the matrix formulation of Heisenberg, realized the state of a particle could be described as a complex-valued wavefunction. Any wavefunction could be expressed as linear combinations of basis eigenfunctions, whose evolution through time was given by the Schrodinger’s Equation. i∂ψ/∂t = Hψ Arpan Saha, Sophomore, IITB, Engineering Physics with Nanoscience, Friday, November 5,

The Hamiltonian Operator H is the Hamiltonian operator that on acting upon a wavefunction at a certain instant yielded its energy as the eigenvalue. In the absence of potential, the Hamiltonian is given by the classical formula for kinetic energy: H = p 2 /2m Substituting the operator for momentum p we get: H = (–1/2m)(  ) 2 Arpan Saha, Sophomore, IITB, Engineering Physics with Nanoscience, Friday, November 5,

Relativistic Limits The Schrödinger equation breaks down at relativistic limits. This is because it is not Lorentz covariant. Time and space do not enter the equation symmetrically. What is the remedy? Arpan Saha, Sophomore, IITB, Engineering Physics with Nanoscience, Friday, November 5,

4-Momentum In Minkowski’s formulation of STR, momentum becomes a 4-vector. Energy is the time component. The space components are as they are. The norm, in naturalized units, is the rest mass m. So we have as the Einstein formula: m 2 = E 2 – p 2 That is E = √(p 2 + m 2 ) Arpan Saha, Sophomore, IITB, Engineering Physics with Nanoscience, Friday, November 5,

Revisiting the Hamiltonian We let H = √(p 2 + m 2 ) = √(–(  ) 2 + m 2 ) So Schrödinger becomes: i∂ψ/∂t = √(–(  ) 2 + m 2 )ψ The square root can be interpreted as a Taylor series. But then, time and space remain asymmetric. Furthermore, the presence of an infinite number of terms makes the theory nonlocal. So, what if we instead use H 2 = p 2 + m 2 ? Arpan Saha, Sophomore, IITB, Engineering Physics with Nanoscience, Friday, November 5,

The Klein-Gordon Equation We get what is known as the Klein-Gordon Equation, obtained in 1927 by Oskar Klein and Walter Gordon. –∂ 2 ψ/∂t 2 = (–(  ) 2 + m 2 )ψ Using the d’Alembert Operator we have:  2 ψ = m 2 ψ But certain problems arise which stand in its way of being a complete description of the dynamics of a relativistic electron. Arpan Saha, Sophomore, IITB, Engineering Physics with Nanoscience, Friday, November 5,

Issues with Klein-Gordon Though Lorentz covariant Klein-Gordon fails some of the requirements of the QM postulates. Being second order in time, determining a particular solution required information about both ψ as well as ∂ψ/∂t. But QM says wavefunction must be a complete description. Also, Klein-Gordon admits solutions where norm and hence, probability is not conserved. So, Klein-Gordon is necessary but not sufficient. Arpan Saha, Sophomore, IITB, Engineering Physics with Nanoscience, Friday, November 5,

Dirac’s Insight We needed an equation that was both first-order in time as well as space. Paul Dirac realized that this might be possible if we interpret the square root in the Einstein formula differently. Arpan Saha, Sophomore, IITB, Engineering Physics with Nanoscience, Friday, November 5,

Dirac’s Insight Let √(p 2 + m 2 ) be of the form α k p k + mβ Comparing coefficients in (α k p k + mβ) 2 = p 2 + m 2, we have: α a α b + α a α b = 2δ ab α k β + βα k = 0 β 2 = 1 This has no solutions in scalars, but it does have if we allow α k and β to be square matrices. Arpan Saha, Sophomore, IITB, Engineering Physics with Nanoscience, Friday, November 5,

Dirac’s Insight It is not difficult to show that α k and β have eigenvalues +–1, trace zero and hence an even order. The simplest solutions (of order 4) are given by the following, σ k being the Pauli spin matrices. Arpan Saha, Sophomore, IITB, Engineering Physics with Nanoscience, Friday, November 5,

The Dirac Equation On being plugged back into our original equation we get: ∂ 0  = (–iα k ∂ k + mβ)  Here  represents a 4  1 matrix (called a spinor) with wavefunctions that satisfy Klein-Gordon. Schrodinger and KG which are scalar could describe only spin 0 particles or particles in absence of magnetic fields. Dirac incorporated spin automatically and could potentially be used to describe electrons subjected to both electric as well as magnetic potentials. Arpan Saha, Sophomore, IITB, Engineering Physics with Nanoscience, Friday, November 5,

Lorentz Covariance of Dirac But we have to check whether it is Lorentz covariant or not. For this we let β operate on Dirac throughout and define the Dirac matrices γ k = βα k while γ 0 = β We obtain (γ λ ∂ λ – 2m)  = 0, which is manifestly covariant. Hence, the Dirac equation conforms with STR. Does it conform with QM as well? Let’s check. Arpan Saha, Sophomore, IITB, Engineering Physics with Nanoscience, Friday, November 5,

Probability Conservation That the Dirac equation is first-order in time and space is straightforward. The equation permits, when the matrices α k and β are hermitian, a continuity equation. The density is  † , which consists of a positive definite entry that can be interpreted as probability density. Probability can hence remain conserved. Dirac is thus a happy marriage of QM and STR. Arpan Saha, Sophomore, IITB, Engineering Physics with Nanoscience Friday, November 5,

Solutions of Dirac Consider a free electron at rest. Four of the eigenspinors satisfying Dirac are as follows: Arpan Saha, Sophomore, IITB, Engineering Physics with Nanoscience, Friday, November 5,

Negative energies? It is easy to see that the first two correspond to positive energy states. And the last two correspond to negative energy state. Why is this a problem? Why can’t we just neglect the solution? QM doesn’t permit us to do so, as electrons may jump into negative states and keep losing energy without ever hitting ground state. Arpan Saha, Sophomore, IITB, Engineering Physics with Nanoscience, Friday, November 5,

A way out? Dirac suggested that the negative energy levels were already occupied by a ‘sea of electrons’. Hence, electrons in ground state are unable to step down to lower energies. But what if an electron from the Dirac sea got excited and left behind a ‘hole’. This hole would have all the attributes of an electron except that it would carry the opposite charge. Which brings us to where we started from. Arpan Saha, Sophomore, IITB, Engineering Physics with Nanoscience, Friday, November 5,

The Positron Dirac was initially wary of his theory as there was virtually no literature pertaining to the observation of such a particle. In 1932, Carl David Anderson, while investigating cosmic rays, chanced across particles that behaved exactly like Dirac’s holes. Named the positron, it earned Anderson the 1936 Nobel Prize in Physics. Arpan Saha, Sophomore, IITB, Engineering Physics with Nanoscience, Friday, November 5,

Concluding Remarks While the formulation in terms of ‘holes’ might seem to indicate some asymmetry, particles and their antiparticles are absolutely symmetrical. An operation called charge conjugation takes one from a particle’s wavefunction to that of its antiparticle in the same potential. In fact, as Feynman showed we might even regard antiparticles as particles traveling backwards through time. Arpan Saha, Sophomore, IITB, Engineering Physics with Nanoscience, Friday, November 5,

Bibliography Dirac, P. A. M. (2004), Principles of Quantum Mechanics 4th edn, Oxford University Press Feynman, R. P. (1967), The Character of Physical Law: The 1964 Messenger Lectures, MIT Press Schwabl, F. (2004), Advanced Quantum Mechanics 2nd edn, Springer International Srednicki, M. (2006), Quantum Field Theory, Cambridge University Press Arpan Saha, Sophomore, IITB, Engineering Physics with Nanoscience, Friday, November 5,

Thank you! Arpan Saha, Sophomore, IITB, Engineering Physics with Nanoscience, Friday, November 5,