Class 14 Testing Hypotheses about Means Paired samples 10.3 p 419-425.

Slides:



Advertisements
Similar presentations
Comparing Two Population Means The Two-Sample T-Test and T-Interval.
Advertisements

Review of Basics. REVIEW OF BASICS PART I Measurement Descriptive Statistics Frequency Distributions.
Review of Basics. REVIEW OF BASICS PART I Measurement Descriptive Statistics Frequency Distributions.
QUANTITATIVE DATA ANALYSIS
Determinants of 2003 Ford Taurus Auction Prices Presented by: Brandon Briggs, Samantha Gardner, Brett Hanifin, Dane Louvier, Ali Irturk, Ryan Nabinger.
DATA ANALYSIS I MKT525. Plan of analysis What decision must be made? What are research objectives? What do you have to know to reach those objectives?
Chapter 14 Analyzing Quantitative Data. LEVELS OF MEASUREMENT Nominal Measurement Nominal Measurement Ordinal Measurement Ordinal Measurement Interval.
Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap 9-1 Introduction to Statistics Chapter 10 Estimation and Hypothesis.
IEEM 3201 Two-Sample Estimation: Paired Observation, Difference.
Chap 9-1 Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc. Chapter 9 Estimation: Additional Topics Statistics for Business and Economics.
A Decision-Making Approach
Business Statistics: A Decision-Making Approach, 7e © 2008 Prentice-Hall, Inc. Chap 10-1 Business Statistics: A Decision-Making Approach 7 th Edition Chapter.
Business Statistics BU305 Chapter 3 Descriptive Stats: Numerical Methods.
15-1 Introduction Most of the hypothesis-testing and confidence interval procedures discussed in previous chapters are based on the assumption that.
In-Patient Costs for Neurological Disorders By Katherine Ammon.
Aim: How do we find confidence interval? HW#9: complete question on last slide on loose leaf (DO NOT ME THE HW IT WILL NOT BE ACCEPTED)
(c) 2007 IUPUI SPEA K300 (4392) Outline: Numerical Methods Measures of Central Tendency Representative value Mean Median, mode, midrange Measures of Dispersion.
Things that I think are important Chapter 1 Bar graphs, histograms Outliers Mean, median, mode, quartiles of data Variance and standard deviation of.
Statistics for the Behavioral Sciences Second Edition Chapter 11: The Independent-Samples t Test iClicker Questions Copyright © 2012 by Worth Publishers.
Examples for the midterm. data = {4,3,6,3,9,6,3,2,6,9} Example 1 Mode = Median = Mean = Standard deviation = Variance = Z scores =
Basic Business Statistics, 11e © 2009 Prentice-Hall, Inc. Chap 10-1 Chapter 2c Two-Sample Tests.
Describing Behavior Chapter 4. Data Analysis Two basic types  Descriptive Summarizes and describes the nature and properties of the data  Inferential.
How to find measures variability using SPSS
Class 23 The most over-rated statistic The four assumptions The most Important hypothesis test yet Using yes/no variables in regressions.
Measures of Dispersion How far the data is spread out.
Trial Group AGroup B Mean P value 2.8E-07 Means of Substances Group.
Determination of Sample Size: A Review of Statistical Theory
© Copyright McGraw-Hill 2000
Is there a relationship between moon phase and birthrate? Finkenthal, N., and Woo, S. Desert View High School, Tucson, Arizona INTRODUCTION: The moon has.
S519: Evaluation of Information Systems
Measures of Location INFERENTIAL STATISTICS & DESCRIPTIVE STATISTICS Statistics of location Statistics of dispersion Summarise a central pointSummarises.
Chapter 8 Minitab Recipe Cards. Confidence intervals for the population mean Choose Basic Statistics from the Stat menu and 1- Sample t from the sub-menu.
Descriptive Statistics Used to describe a data set –Mean, minimum, maximum Usually include information on data variability (error) –Standard deviation.
Health Indicators and how they affect Death Rates in Developing vs. Developed Countries Malini Sen Cori Williams Monica Neuman Jaron Abelsohn.
Statistics 1: Introduction to Probability and Statistics Section 3-2.
Summarizing Risk Analysis Results To quantify the risk of an output variable, 3 properties must be estimated: A measure of central tendency (e.g. µ ) A.
 A Characteristic is a measurable description of an individual such as height, weight or a count meeting a certain requirement.  A Parameter is a numerical.
T Test for Two Independent Samples. t test for two independent samples Basic Assumptions Independent samples are not paired with other observations Null.
Chapter 10 Statistical Inference for Two Samples More than one but less than three! Chapter 10B < X
Paired Samples Lecture 39 Section 11.3 Tue, Nov 15, 2005.
Class 22. Understanding Regression EMBS Part of 12.7 Sections 1-3 and 7 of Pfeifer Regression note.
Goodness-of-fit (GOF) Tests Testing for the distribution of the underlying population H 0 : The sample data came from a specified distribution. H 1 : The.
AP Statistics. Chap 13-1 Chapter 13 Estimation and Hypothesis Testing for Two Population Parameters.
Example Suppose that we take a random sample of eight fuel efficient cars and record the gas mileage. Calculate the following for the results: 33, 41,
Welcome to MM207 - Statistics! Unit 6 Seminar: Inferential Statistics and Confidence Intervals.
Lecture 8 Estimation and Hypothesis Testing for Two Population Parameters.
Economics 111Lecture 7.2 Quantitative Analysis of Data.
Chapter 12 Inference on the Least-squares Regression Line; ANOVA 12.3 One-way Analysis of Variance.
Chapter 6: Descriptive Statistics. Learning Objectives Describe statistical measures used in descriptive statistics Compute measures of central tendency.
Dr. Justin Bateh. Point of Estimate the value of a single sample statistics, such as the sample mean (or the average of the sample data). Confidence Interval.
Student ’ s t-distribution. In cases where the population variance σ 2 is unknown we can use the sample variance S 2 as the best point estimate for the.
Statistical Measures M M O D E E A D N I A R A N G E.
One-Sample Hypothesis Tests
Summary of Prev. Lecture
Prepared by Lloyd R. Jaisingh
Analysis of Financials of ITC ltd.
Part Three. Data Analysis
European Euro EUR- Group One
حــزمة ادوات التحليل Analysis ToolPak
Chapter 6 Confidence Intervals.
Descriptive Statistics: Describing Data
More Weather Stats.
Probability and Statistics (week-9)
Mean, Median, Mode The Mean is the simple average of the data values. Most appropriate for symmetric data. The Median is the middle value. It’s best.
Statistics 1: Introduction to Probability and Statistics
Summary of Tests Confidence Limits
Chapter 24 Comparing Two Means.
Inference for Distributions
Biostatistics Lecture (2).
Presentation transcript:

Class 14 Testing Hypotheses about Means Paired samples 10.3 p

Weight (in pounds) of 72 anorexic patients before and after treatment Weight beforeafter beforeafter beforeafter

Data/Data Analysis/ Descriptive Statistics/Summary Statistics and Confidence Level for Mean Before After Mean82.36Mean85.04 Standard Error0.61Standard Error0.93 Median81.85Median84.05 Mode86Mode81.4 Standard Deviation5.184Standard Deviation7.927 Sample Variance26.875Sample Variance Kurtosis-0.007Kurtosis Skewness-0.022Skewness0.408 Range24.9Range32.3 Minimum70Minimum71.3 Maximum94.9Maximum103.6 Sum5929.9Sum Count72Count72 Confidence Level(95.0%)1.218Confidence Level(95.0%)1.863 s/n^.5 7.9/72^ / is the 95% confidence interval for the mean.

H0: μ b = μ a Ha: μ a > μ b Test Statistic P-value = t.dist.rt(2.40,142) =

H0: μ b = μ a Ha: μ a > μ b t-Test: Two-Sample Assuming Equal Variances AfterBefore Mean Variance Observations72 Pooled Variance Hypothesized Mean Difference0.000 df142 t Stat2.400 P(T<=t) one-tail t Critical one-tail1.656 P(T<=t) two-tail0.018 t Critical two-tail1.977 Same as previous slide! Data must be in two columns. If this is all you want, =t.test() is for you!

The 2-sample t-test we just did is VALID. But we can do better….. By taking advantage of our paired data.

Paired Data n1 must equal n2 For each of the before values, there must be a corresponding after value for the same element. – Here the data elements are the patients. And the paired nature of the data is OBVIOUS. Using a paired test when the data are paired USUALLY leads to a valid and LOWER p-value. – Because s1 and s2 (the standard deviations of each group) do NOT enter into the “equation” – Instead, we use the sample standard deviation of the n differences…which is usually “pretty” small. Instead of dealing with the variation in weights across the patients (s1 and s2), we deal only with the variation in pounds gained. – 90 to 92 and 45 to 47 are both gains of 2.

H0: μ b = μ a Ha: μ a > μ b Better than before! t-Test: Paired Two Sample for Means AfterBefore Mean Variance Observations72 Pearson Correlation Hypothesized Mean Difference0 df71 t Stat P(T<=t) one-tail t Critical one-tail P(T<=t) two-tail t Critical two-tail1.9939

H0: μ b = μ a Ha: μ a > μ b The = t.dist(array1,array2,1,1) takes you directly to the p-value 1 for 1-tail 1 for paired If all you want is the p-value…..

H0: μ b = μ a Ha: μ a > μ b IDGroupBeforeAfterAft-Before Average count72 stdev standard error t-stat dof71 p-value A paired two-sample t-test for means Is equivalent to A one-sample t-test of H0: μ A-B = /.92

Case: The Sophomore Jinx

The Data…. Exhibit 1 American League Rookie Award Data, Non Pitchers Rookie YearSophomore Year YearPlayerGABBASAGABBASA 1949Roy Sievers Walter Dropo Gilbert McDougald Harvey Kuenn Ben Grieve Carlos Beltran Ichiro S uzuki Eric Hinske Angel Berroa Exhibit 2 National League Non-Pitchers Rookie YearSophomore Year YearPlayerGABBASAGABBASA 1950Samuel Jethroe Willie Mays James Gilliam Wallace Moon William Virdon Todd Hollandsworth Scott Rolen Rafael Furcal Albert Pujols

H0: Ha: Test Statistic P-value and Conclusion

additional notes….