Week 12 November 17-21 Four Mini-Lectures QMM 510 Fall 2014.

Slides:



Advertisements
Similar presentations
13 Multiple Regression Chapter Multiple Regression
Advertisements

Week 13 November Three Mini-Lectures QMM 510 Fall 2014.
Pengujian Parameter Regresi Pertemuan 26 Matakuliah: I0174 – Analisis Regresi Tahun: Ganjil 2007/2008.
6-1 Introduction To Empirical Models 6-1 Introduction To Empirical Models.
Copyright (c) 2004 Brooks/Cole, a division of Thomson Learning, Inc. Chapter 13 Nonlinear and Multiple Regression.
LECTURE 3 Introduction to Linear Regression and Correlation Analysis
Chapter 13 Additional Topics in Regression Analysis
Chapter 12 Simple Regression
Additional Topics in Regression Analysis
The Simple Regression Model
1 1 Slide 統計學 Spring 2004 授課教師:統計系余清祥 日期: 2004 年 5 月 4 日 第十二週:複迴歸.
Basic Business Statistics, 11e © 2009 Prentice-Hall, Inc. Chap 14-1 Chapter 14 Introduction to Multiple Regression Basic Business Statistics 11 th Edition.
Multiple Linear Regression
Multiple Regression and Correlation Analysis
1 1 Slide © 2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
1 1 Slide © 2003 South-Western/Thomson Learning™ Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
BCOR 1020 Business Statistics Lecture 24 – April 17, 2008.
Chapter 14 Introduction to Linear Regression and Correlation Analysis
McGraw-Hill/Irwin Copyright © 2013 by The McGraw-Hill Companies, Inc. All rights reserved. A PowerPoint Presentation Package to Accompany Applied Statistics.
Simple Linear Regression Analysis
Review for Final Exam Some important themes from Chapters 9-11 Final exam covers these chapters, but implicitly tests the entire course, because we use.
Multiple Linear Regression A method for analyzing the effects of several predictor variables concurrently. - Simultaneously - Stepwise Minimizing the squared.
Week 9 October Four Mini-Lectures QMM 510 Fall 2014.
1 Chapter 10 Correlation and Regression We deal with two variables, x and y. Main goal: Investigate how x and y are related, or correlated; how much they.
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS & Updated by SPIROS VELIANITIS.
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS & Updated by SPIROS VELIANITIS.
Correlation & Regression
Introduction to Linear Regression and Correlation Analysis
Inference for regression - Simple linear regression
Chapter 13: Inference in Regression
Correlation and Linear Regression
Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved Section 10-1 Review and Preview.
Bivariate Regression (Part 1) Chapter1212 Visual Displays and Correlation Analysis Bivariate Regression Regression Terminology Ordinary Least Squares Formulas.
1 1 Slide © 2005 Thomson/South-Western Slides Prepared by JOHN S. LOUCKS St. Edward’s University Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
1 1 Slide © 2003 Thomson/South-Western Chapter 13 Multiple Regression n Multiple Regression Model n Least Squares Method n Multiple Coefficient of Determination.
1 1 Slide © 2007 Thomson South-Western. All Rights Reserved OPIM 303-Lecture #9 Jose M. Cruz Assistant Professor.
1 1 Slide © 2007 Thomson South-Western. All Rights Reserved Chapter 13 Multiple Regression n Multiple Regression Model n Least Squares Method n Multiple.
1 1 Slide © 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
1 1 Slide Multiple Regression n Multiple Regression Model n Least Squares Method n Multiple Coefficient of Determination n Model Assumptions n Testing.
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Chapter 15 Multiple Regression n Multiple Regression Model n Least Squares Method n Multiple.
CHAPTER 14 MULTIPLE REGRESSION
1 1 Slide © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
Chap 14-1 Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc. Chapter 14 Additional Topics in Regression Analysis Statistics for Business.
Week 10 Nov 3-7 Two Mini-Lectures QMM 510 Fall 2014.
1 Chapter 12 Simple Linear Regression. 2 Chapter Outline  Simple Linear Regression Model  Least Squares Method  Coefficient of Determination  Model.
Lecture 8 Simple Linear Regression (cont.). Section Objectives: Statistical model for linear regression Data for simple linear regression Estimation.
Chapter 4 Linear Regression 1. Introduction Managerial decisions are often based on the relationship between two or more variables. For example, after.
McGraw-Hill/Irwin Copyright © 2013 by The McGraw-Hill Companies, Inc. All rights reserved. A PowerPoint Presentation Package to Accompany Applied Statistics.
14- 1 Chapter Fourteen McGraw-Hill/Irwin © 2006 The McGraw-Hill Companies, Inc., All Rights Reserved.
Chapter 16 Data Analysis: Testing for Associations.
Chapter 13 Multiple Regression
1 1 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
Copyright © 2004 by The McGraw-Hill Companies, Inc. All rights reserved.
Basic Business Statistics, 10e © 2006 Prentice-Hall, Inc. Chap 15-1 Chapter 15 Multiple Regression Model Building Basic Business Statistics 10 th Edition.
Introduction to Multiple Regression Lecture 11. The Multiple Regression Model Idea: Examine the linear relationship between 1 dependent (Y) & 2 or more.
1 1 Slide The Simple Linear Regression Model n Simple Linear Regression Model y =  0 +  1 x +  n Simple Linear Regression Equation E( y ) =  0 + 
4-1 MGMG 522 : Session #4 Choosing the Independent Variables and a Functional Form (Ch. 6 & 7)
Bivariate Regression. Bivariate Regression analyzes the relationship between two variables. Bivariate Regression analyzes the relationship between two.
Regression and Correlation
BINARY LOGISTIC REGRESSION
John Loucks St. Edward’s University . SLIDES . BY.
Slides by JOHN LOUCKS St. Edward’s University.
Business Statistics Multiple Regression This lecture flows well with
CHAPTER 29: Multiple Regression*
Prepared by Lee Revere and John Large
Multiple Regression Chapter 14.
Chapter Fourteen McGraw-Hill/Irwin
Essentials of Statistics for Business and Economics (8e)
Presentation transcript:

Week 12 November Four Mini-Lectures QMM 510 Fall 2014

13-2 Chapter Contents 13.1 Multiple Regression 13.2 Assessing Overall Fit 13.3 Predictor Significance 13.4 Confidence Intervals for Y 13.5 Categorical Predictors 13.6 Tests for Nonlinearity and Interaction 13.7 Multicollinearity 13.8 Violations of Assumptions 13.9 Other Regression Topics Chapter 13 Multiple Regression ML 12.1 Much of this is like Chapter 12, except that we have more than one predictor.

13-3 Multiple regression is an extension of simple regression to include more than one independent variable. Limitations of simple regression: often simplistic biased estimates if relevant predictors are omitted lack of fit does not show that X is unrelated to Y if the true model is multivariate Simple or Multivariate? Simple or Multivariate? Chapter 13 Multiple Regression

13-4 Chapter 13 Visualizing a Multiple Regression Multiple Regression

13-5 Y is the response variable and is assumed to be related to the k predictors (X 1, X 2, … X k ) by a linear equation called the population regression model: The estimated (fitted) regression equation is: Regression Terminology Regression Terminology Chapter 13 Multiple Regression Use Roman letters for sample estimates Use Greek letters for population parameters

13-6 Fitted Regression: Simple versus Multivariate Fitted Regression: Simple versus Multivariate Chapter 13 Multiple Regression If we have more than two predictors, there is no way to visualize it …

13-7 n observed values of the response variable Y and its proposed predictors X 1, X 2, …, X k are presented in the form of an n x k matrix. Data Format Data Format Chapter 13 Multiple Regression

13-8 Chapter 13 Common Misconceptions about Fit Common Misconceptions about Fit A common mistake is to assume that the model with the best fit is preferred.A common mistake is to assume that the model with the best fit is preferred. Sometimes a model with a low R 2 may give useful predictions, while a model with a high R 2 may conceal problems.Sometimes a model with a low R 2 may give useful predictions, while a model with a high R 2 may conceal problems. Thoroughly analyze the results before choosing the model.Thoroughly analyze the results before choosing the model. Multiple Regression

13-9 Four Criteria for Regression Assessment Logic - Is there an a priori reason to expect a causal relationship between the predictors and the response variable? Logic - Is there an a priori reason to expect a causal relationship between the predictors and the response variable? Fit - Does the overall regression show a significant relationship between the predictors and the response variable? Fit - Does the overall regression show a significant relationship between the predictors and the response variable? Parsimony - Does each predictor contribute significantly to the explanation? Are some predictors not worth the trouble? Parsimony - Does each predictor contribute significantly to the explanation? Are some predictors not worth the trouble? Stability - Are the predictors related to one another so strongly that the regression estimates become erratic? Stability - Are the predictors related to one another so strongly that the regression estimates become erratic? Chapter 13 Multiple Regression

13-10 Assessing Overall Fit For a regression with k predictors, the hypotheses to be tested are H 0 : All the true coefficients are zero H 1 : At least one of the coefficients is nonzero In other words, H 0 :  1 =  2 = … =  k = 0 H 1 : At least one of the coefficients is nonzero F Test for Significance F Test for Significance Chapter 13

13-11 F Test for Significance F Test for Significance Chapter 13 The ANOVA calculations for a k-predictor model resemble those for a simple regression, except for degrees of freedom: Assessing Overall Fit

13-12 R 2, the coefficient of determination, is a common measure of overall fit. It can be calculated in one of two ways (always done by computer). For example, for the home price data, Coefficient of Determination (R 2 ) Coefficient of Determination (R 2 ) Chapter 13 Assessing Overall Fit

13-13 It is generally possible to raise the coefficient of determination R 2 by including additional predictors. The adjusted coefficient of determination is done to penalize the inclusion of useless predictors. For n observations and k predictors: Adjusted R 2 Adjusted R 2 Chapter 13 Assessing Overall Fit

13-14 Limit the number of predictors based on the sample size. Limit the number of predictors based on the sample size. A large sample size permits many predictors. A large sample size permits many predictors. When n/k is small, the R 2 no longer gives a reliable indication of fit. When n/k is small, the R 2 no longer gives a reliable indication of fit. Suggested rules are: Suggested rules are: Evan’s Rule (conservative): n/k  0 (at least 10 observations per predictor) Doane’s Rule (relaxed): n/k  5 (at least 5 observations predictor) How Many Predictors? How Many Predictors? Chapter 13 Assessing Overall Fit These are just guidelines – use your judgment.

13-15 Test each fitted coefficient to see whether it is significantly different from zero. The hypothesis tests for the coefficient of predictor X j are If we cannot reject the hypothesis that a coefficient is zero, then the corresponding predictor does not contribute to the prediction of Y. Chapter 13 Predictor Significance

13-16 Excel reports the test statistic for the coefficient of predictor X j :Excel reports the test statistic for the coefficient of predictor X j : Test Statistic Test Statistic Find the critical value t α for chosen level of significance α from Appendix D or from Excel using =T.INV.2T(α,df)  2 tailed test.Find the critical value t α for chosen level of significance α from Appendix D or from Excel using =T.INV.2T(α,df)  2 tailed test. To reject H 0 we compare t calc to t α for the different hypotheses (or reject if p-value  α .To reject H 0 we compare t calc to t α for the different hypotheses (or reject if p-value  α . Chapter 13 The 95% confidence interval for coefficient  j isThe 95% confidence interval for coefficient  j is Predictor Significance

13-17 Confidence Intervals for Y The standard error of the regression (s e ) is another important measure of fit. Except for d.f. the formula for s e resembles se for simple regression. For n observations and k predictors Standard Error Standard Error If all predictions were perfect (SSE = 0) then s e = 0. Chapter 13

13-18 Approximate 95% confidence interval for conditional mean of Y: Approximate 95% prediction interval for individual Y value: Approximate Confidence and Prediction Intervals for Y Approximate Confidence and Prediction Intervals for Y Chapter 13 Confidence Intervals for Y

13-19 The t-values for 95% confidence are typically near 2 (as long as n is not too small). Very quick prediction and confidence intervals for Y interval without using a t table are: Quick 95 Percent Confidence and Prediction Interval for Y Quick 95 Percent Confidence and Prediction Interval for Y Chapter 13 Confidence Intervals for Y

12-20 Unusual Observations ML 12.2 Standardized Residuals Standardized Residuals Use Excel, MINITAB, MegaStat or other software to compute standardized residuals. If the absolute value of any standardized residual is at least 2, then it is classified as unusual (as in simple regression). Chapter 13 Leverage and Influence Leverage and Influence A high leverage statistic indicates unusual X values in one or more predictors.A high leverage statistic indicates unusual X values in one or more predictors. Such observations are influential because they are near the edge(s) of the fitted regression plane.Such observations are influential because they are near the edge(s) of the fitted regression plane. Leverage for observation i is denoted h i (computed by MegaStat)Leverage for observation i is denoted h i (computed by MegaStat)

12-21 Leverage Leverage unusual For a regression model with k predictors, an observation whose leverage exceeds 2(k+1)/n is unusual. In Chapter 12, the leverage rule was 4/n. With k = 1 predictor, we get 2(k+1)/n = 2(1+1)/n = 4/n. So this leverage criterion applies to simple regression as a special case. Chapter 13 Unusual Observations

12-22 Chapter 13 Unusual Observations Example: Heart Death Rate in 50 States Example: Heart Death Rate in 50 States n = 50 states, k = 3 predictors high leverage criterion is 2(k+1)/n = 2(3+1)/50 = Note: Only unusual observations are shown (there were n = 50 observations) MegaStat highlights the high leverage observations (>.160) 4 states (FL, HI, OK, WV) have unusual residuals (> 2 s e ) highlighted by MegaStat standard error s e =

13-23 Categorical Predictors ML 12.3 A binary predictor has two values (usually 0 and 1) to denote the presence or absence of a condition. For example, for n graduates from an MBA program: Employed = 1 Unemployed = 0 These variables are also called dummy, dichotomous, or indicator variables. For easy understandability, name the binary variable the characteristic that is equivalent to the value of 1. What Is a Binary or Categorical Predictor? What Is a Binary or Categorical Predictor? Chapter 13

13-24 A binary predictor is sometimes called a shift variable because it shifts the regression plane up or down. Suppose X 1 is a binary predictor that can take on only the values of 0 or 1. Its contribution to the regression is either b 1 or nothing, resulting in an intercept of either b 0 (when X 1 = 0) or b 0 + b 1 (when X 1 = 1). The slope does not change: only the intercept is shifted. For example, Effects of a Binary Predictor Effects of a Binary Predictor Chapter 13 Categorical Predictors

13-25 In multiple regression, binary predictors require no special treatment. They are tested as any other predictor using a t test. Testing a Binary for Significance Testing a Binary for Significance Chapter 13 More Than One Binary More Than One Binary More than one binary occurs when the number of categories to be coded exceeds two. For example, for the variable GPA by class level, each category is a binary variable: Freshman = 1 if a freshman, 0 otherwise Sophomore = 1 if a sophomore, 0 otherwise Junior = 1 if a junior, 0 otherwise Senior = 1 if a senior, 0 otherwise Masters = 1 if a master’s candidate, 0 otherwise Doctoral = 1 if a PhD candidate, 0 otherwise Categorical Predictors

13-26 Including all binaries for all categories may introduce a serious problem of collinearity for the regression estimation. Collinearity occurs when there are redundant independent variables. When the value of one independent variable can be determined from the values of other independent variables, one column in the X data matrix will be a perfect linear combination of the other column(s). The least squares estimation would fail because the data matrix would be singular (i.e., would have no inverse). What if I Forget to Exclude One Binary? What if I Forget to Exclude One Binary? Chapter 13 Categorical Predictors

13-27 Other Regression Problems Outliers? (omit only if clearly errors) Missing Predictors? (usually you can’t tell) Ill-Conditioned Data (adjust decimals or take logs) Significance in Large Samples? (if n is huge, almost any regression will be significant) Model Specification Errors? (may show up in residual patterns) Missing Data? (we may have to live without it) Binary Response? (if Y = 0,1 we use logistic regression) Stepwise and Best Subsets Regression (MegaStat does these) Chapter 13