Quantum Griffiths Phases of Correlated Electrons Collaborators: Eric Adrade (Campinas) Matthew Case (FSU) Eduardo Miranda (Campinas) REVIEW: Reports on.

Slides:



Advertisements
Similar presentations
Theory of the pairbreaking superconductor-metal transition in nanowires Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
Advertisements

From weak to strong correlation: A new renormalization group approach to strongly correlated Fermi liquids Alex Hewson, Khan Edwards, Daniel Crow, Imperial.
Quantum Critical Behavior of Disordered Itinerant Ferromagnets D. Belitz – University of Oregon, USA T.R. Kirkpatrick – University of Maryland, USA M.T.
Are there gels in quantum systems? Jörg Schmalian, Iowa State University and DOE Ames Laboratory Peter G. Wolynes University of California at San Diego.
D-wave superconductivity induced by short-range antiferromagnetic correlations in the Kondo lattice systems Guang-Ming Zhang Dept. of Physics, Tsinghua.
Disorder and chaos in quantum system: Anderson localization and its generalization (6 lectures) Boris Altshuler (Columbia) Igor Aleiner (Columbia)
Antoine Georges Olivier Parcollet Nick Read Subir Sachdev Jinwu Ye Mean field theories of quantum spin glasses Talk online: Sachdev.
Detecting collective excitations of quantum spin liquids Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
Magnetism in systems of ultracold atoms: New problems of quantum many-body dynamics E. Altman (Weizmann), P. Barmettler (Frieburg), V. Gritsev (Harvard,
Subir Sachdev Science 286, 2479 (1999). Quantum phase transitions in atomic gases and condensed matter Transparencies online at
Dilute anisotropic dipolar systems as random field Ising ferromagnets In collaboration with: Philip Stamp Nicolas Laflorencie Moshe Schechter University.
Quantum phase transitions in anisotropic dipolar magnets In collaboration with: Philip Stamp, Nicolas laflorencie Moshe Schechter University of British.
Phase Diagram of One-Dimensional Bosons in Disordered Potential Anatoli Polkovnikov, Boston University Collaboration: Ehud Altman-Weizmann Yariv Kafri.
Dilute anisotropic dipolar systems as random field Ising ferromagnets In collaboration with: Philip Stamp, Nicolas Laflorencie Moshe Schechter University.
Strongly Correlated Systems of Ultracold Atoms Theory work at CUA.
Glassy dynamics of electrons near the metal-insulator transition in two dimensions Acknowledgments: NSF DMR , DMR , NHMFL; IBM-samples; V.
Universality in ultra-cold fermionic atom gases. with S. Diehl, H.Gies, J.Pawlowski S. Diehl, H.Gies, J.Pawlowski.
Subir Sachdev (Harvard) Philipp Werner (ETH) Matthias Troyer (ETH) Universal conductance of nanowires near the superconductor-metal quantum transition.
Quick and Dirty Introduction to Mott Insulators
A new scenario for the metal- Mott insulator transition in 2D Why 2D is so special ? S. Sorella Coll. F. Becca, M. Capello, S. Yunoki Sherbrook 8 July.
Probing phases and phase transitions in cold atoms using interference experiments. Anatoli Polkovnikov, Boston University Collaboration: Ehud Altman- The.
Interference of fluctuating condensates Anatoli Polkovnikov Harvard/Boston University Ehud Altman Harvard/Weizmann Vladimir Gritsev Harvard Mikhail Lukin.
THE STATE UNIVERSITY OF NEW JERSEY RUTGERS Studies of Antiferromagnetic Spin Fluctuations in Heavy Fermion Systems. G. Kotliar Rutgers University. Collaborators:
Multifractal superconductivity Vladimir Kravtsov, ICTP (Trieste) Collaboration: Michael Feigelman (Landau Institute) Emilio Cuevas (University of Murcia)
Chap.3 A Tour through Critical Phenomena Youjin Deng
A semiclassical, quantitative approach to the Anderson transition Antonio M. García-García Princeton University We study analytically.
Mott –Hubbard Transition & Thermodynamic Properties in Nanoscale Clusters. Armen Kocharian (California State University, Northridge, CA) Gayanath Fernando.
Magnetic quantum criticality Transparencies online at Subir Sachdev.
Equilibrium dynamics of entangled states near quantum critical points Talk online at Physical Review Letters 78, 843.
Searching for spin-liquids and non-Fermi liquids in quantum strongly correlated systems.
Heavy Fermions Student: Leland Harriger Professor: Elbio Dagotto Class: Solid State II, UTK Date: April 23, 2009.
Superglasses and the nature of disorder-induced SI transition
2D-MIT as a Wigner-Mott Transition Collaborators: John Janik (FSU) Darko Tanaskovic (FSU) Carol Aguiar (FSU, Rutgers) Eduardo Miranda (Campinas) Gabi.
Electron coherence in the presence of magnetic impurities
Fermionic quantum criticality and the fractal nodal surface Jan Zaanen & Frank Krüger.
Glass Phenomenology from the connection to spin glasses: review and ideas Z.Nussinov Washington University.
Non-Fermi liquid vs (topological) Mott insulator in electronic systems with quadratic band touching in three dimensions Igor Herbut (Simon Fraser University,
Solving Impurity Structures Using Inelastic Neutron Scattering Quantum Magnetism - Pure systems - vacancies - bond impurities Conclusions Collin Broholm*
Complexity in Transition-Metal Oxides and Related Compounds A. Moreo and E. Dagotto Univ. of Tennessee, Knoxville (on leave from FSU, Tallahassee) NSF-DMR
Self-generated instability of a ferromagnetic quantum-critical point
Self-consistent Calculations for Inhomogeneous Correlated Systems Amit Ghosal IISER, Kolkata HRI, 12 Nov, 2010.
Electronic Griffiths phases and dissipative spin liquids
Generalized Dynamical Mean - Field Theory for Strongly Correlated Systems E.Z.Kuchinskii 1, I.A. Nekrasov 1, M.V.Sadovskii 1,2 1 Institute for Electrophysics.
Wigner-Mott scaling of transport near the two-dimensional metal-insulator transition Milos Radonjic, D. Tanaskovic, V. Dobrosavljevic, K. Haule, G. Kotliar.
Order and disorder in dilute dipolar magnets
The Helical Luttinger Liquid and the Edge of Quantum Spin Hall Systems
Raman Scattering As a Probe of Unconventional Electron Dynamics in the Cuprates Raman Scattering As a Probe of Unconventional Electron Dynamics in the.
Quasi-1D antiferromagnets in a magnetic field a DMRG study Institute of Theoretical Physics University of Lausanne Switzerland G. Fath.
Glassy dynamics near the two-dimensional metal-insulator transition Acknowledgments: NSF grants DMR , DMR ; IBM, NHMFL; V. Dobrosavljević,
From J.R. Waldram “The Theory of Thermodynamics”.
Deconfined quantum criticality Leon Balents (UCSB) Lorenz Bartosch (Frankfurt) Anton Burkov (Harvard) Matthew Fisher (UCSB) Subir Sachdev (Harvard) Krishnendu.
Frustrated magnetism in 2D Collin Broholm Johns Hopkins University & NIST  Introduction Two types of antiferromagnets Experimental tools  Frustrated.
Eutectic Phase Diagram NOTE: at a given overall composition (say: X), both the relative amounts.
NTNU, April 2013 with collaborators: Salman A. Silotri (NCTU), Chung-Hou Chung (NCTU, NCTS) Sung Po Chao Helical edge states transport through a quantum.
NTNU 2011 Dimer-superfluid phase in the attractive Extended Bose-Hubbard model with three-body constraint Kwai-Kong Ng Department of Physics Tunghai University,
DISORDER AND INTERACTION: GROUND STATE PROPERTIES of the DISORDERED HUBBARD MODEL In collaboration with : Prof. Michele Fabrizio and Dr. Federico Becca.
Rapidly-converging methods for the location of quantum critical points from finite-size data Cristian Degli Esposti Boschi CNR, Unità di ricerca CNISM.
Review on quantum criticality in metals and beyond
Some open questions from this conference/workshop
Quantum vortices and competing orders
Strong Disorder Renormalization Group
Science 303, 1490 (2004); cond-mat/ cond-mat/
Quantum phases and critical points of correlated metals
Quantum phase transitions and the Luttinger theorem.
Superfluid-Insulator Transition of
Spectroscopy of ultracold bosons by periodic lattice modulations
Deconfined quantum criticality
Qimiao Si Rice University
Quantum phase transitions out of the heavy Fermi liquid
Institute for Theoretical Physics,
Presentation transcript:

Quantum Griffiths Phases of Correlated Electrons Collaborators: Eric Adrade (Campinas) Matthew Case (FSU) Eduardo Miranda (Campinas) REVIEW: Reports on Progress in Physics 68, 2337–2408 (2005) Vladimir Dobrosavljevic Department of Physics and National High Magnetic Field Laboratory Florida State University,USA Funding: NSF grants: DMR DMR DMR

Disorder and QCP: The Cold War Era ( ) Criticality and Collectivization There is not, nor should there be, an irreconcilable contrast between the individual and the collective, between the interests of an individual person and the interests of the collective.” (Joseph Stalin) Collectivization: Theory Ken Wilson’s RG Long wavelength modes rule! GRIFFITHS singularities, Harris criterion: “Weak” disorder corrections

Trouble Starts (circa 1990) Dissidents run away over the Berlin Wall Weak coupling RG finds run away flows for QCPs with disorder (Sachdev,...,Vojta,...)

Quantum Griffiths phases and IRFP (1990s) D. Fisher (1991): new scenario for (insulating) QCPs with disorder (Ising) Griffiths phase g T ordered phase clean phase boundary Griffiths phase (Till + Huse): Rare, dilute magnetically ordered cluster tunnels with rate Δ(L) ~ exp{-AL d } P(L) ~ exp{-ρL d } P(Δ) ~ Δ α-1 ; χ ~ T α-1 α → 0 at QCP (IRFP)

General classification for single-droplet dynamics (T. Vojta) Large droplets: SEMICLASSICAL! L τ Droplet dynamics (all symmetry classes) Classical spin chain (Kosrerlitz, 1976) LGW action (L > ξ) 2

Symmetry and dissipation (SINGLE DROPLET) 1. Insulating magnets (z=1) – short-range interaction (in time) Ising: at “LCD” – tunneling rate Δ(L) ~ τ ξ -1 ~ exp{-π|r|L d } Heisenberg: below LCD – powerlaw only no QGP! 2.Metallic magnets (z=2) – long-range 1/τ 2 interaction (dissipation) Ising: above “LCD” – dissipative phase transition Large droplets (L > L c ) freeze!! (Caldeira-Leggett, i.e. K-T) “ROUNDING” of QCP (T. Vojta, Hoyos) Heisenberg: at “LCD” Δ(L) ~ τ ξ -1 ~ exp{-π|r|L d } QGP ??? (Vojta-Schmalian) * SDRG theory (Vojta+Hoyos, 2008)

How RKKY affect the droplet dynamics?? RKKY-interacting droplets? (Dobrosavljevic, Miranda, PRL 2005) L1L1 J 14 R 12 J RKKY random sign NOTE: Droplet-QGP – all dimensions! Strategy: integrate-out “other” droplets δS RKKY =J 2 ∑ ∫ dτ ∫dτ’ φ(τ) χ av (τ-τ’) φ(τ’) χ av (ω n ) = ∫dΔ P(Δ) χ(Δ; ω n ) = ~ ∫dΔ Δ α-1 [iω n + Δ] -1 = χ(0) - |ω| α-1 additional dissipation due to spin fluctuations non-Ohmic (strong) dissipation for α < 2!!

   g T     ordered phase clean phase boundary Griffiths (non-Ohmic dissipation) cluster glass Cluster-glass phase (“foot”): generic case of QGP in metals (Dobrosavljevic, Miranda, PRL 2005) Fluctuation-driven first-order glass transition Matthew Case & V.D. (PRL, 2007)

Cluster-glass Quantum Criticality: large N solution (M. Case + V.D.; PRL 99, (2007)) Uniform droplet case (QSG): P(r i )=  (r-r i )  no Griff. fluctuations, conventional QCP Distribution of droplet sizes: P(r i )  exp[-2  (r i -r)/u] Novel fluctuation-driven first order transition!! full self-consistency:  av (  )   0 - |  |  ’-1

Experimental candidates? Double-Layered Ruthenate alloys (Sr 1-x Ca x ) 3 Ru 2 O 7 [Z. Mao (Tulane) + V.D., Phys. Rev. B (Rapid Comm.) 78, (2008)]

Disorder near Mott transitions: generic phase diagram Previous studies (motivated by Si:P): –Milovanović, Sachdev, and Bhatt, PRL 63, 82 (1989). Mean-field theory of the disordered Hubbard model –V. Dobrosavljević and G. Kotliar, PRL78, 3943 (1997). “statDMFT” on Bethe lattice (finite coordination, D=inf.!!) Disorder MIT Insulator Non-Fermi-liquid metal Fermi-liquid metal  (T=0)=  o  (T=0)=  Electronic Griffiths Phases?

statDMFT: local (though spatially non-uniform) self-energies Local renormalizations Each local site is governed by an impurity action: : hybridization to the neighboring sites statDMFT in D=2 Eric Andrade, E. Miranda, V.D., cond-mat/

Clean case (W=0): Mott metal-insulator transition at U=U c, where Z  (Brinkman and Rice, 1970). Fermi liquid approach in which each fermion acquires a quasi- particle renormalization and each site-energy is renormalized: Physical content of statDMFT

For U  U c (W), all Z i   vanish (disordered Mott transition) If we re-scale all Z i by Z 0 ~ U c (W)-U, we can look at P(Z i /Z 0 ) For D =∞ (DMFT), P(Z/Z 0 ) - universal form at U c. Z0Z0 gap Results in D = ∞ (D. Tanasković et al., PRL 2003; M. C. O. Aguiar et al., PRB 2005)

In D=2, the environment of each site (“bath”) has strong spatial fluctuations New physics: rare evens due to fluctuations and spatial correlations Distribution P(Z/Z 0 ) acquires a low-Z tail : DMFT Results in D=2 (E. C. Andrade, Eduardo Miranda, V. D., arXiv: v1)

Remembering that the local Kondo temperature and Singular thermodynamic response The exponent  is a function of disorder and interaction strength.  =1 marks the onset of singular thermodynamics. Quantum Griffiths phase (see, e.g., E. Miranda and V. D., Rep. Progr. Phys. 68, 2337 (2005); T. Vojta, J. Phys. A 39, R143 (2006)) Results: Thermodynamics

Z typ = exp{ } Phase Diagram (U > W)

Most characterized Quantum Griffiths phases are precursors of a critical point where the effective disorder is infinite (D. S. Fisher, PRL 69, 534 (1992); PRB 51, 6411 (1995); ….) Compatible with infinite randomness fixed point scenario  -1 – variance of log(Z) Infinite randomness at the MIT?

Replace the environment of given site outside square by uniform (DMFT-CPA) effective medium. Reduce square size down to DMFT limit. Rare evrents due to rare regions with weaker disorder U=0.96U c ;W=2.5D Rare event! The rare event is preserved for a box of size l > 9: rather smooth profile with a characteristic size. “Size” of the rare events? Typical sample

Killing the Mott droplet “Size” of the rare events: a movie

The effective disorder at the Fermi level is given by the distribution of: This quantity is strongly renormalized close to the Mott MIT Width of the v i distribution is pinned to Fermi level (Kondo resonance) Spectrosopic signatures: disorder screening

However, the effect is lost even slightly away from the Fermi energy: U=0.96U c ;W=0.375D E=E F E=E F D The strong disorder effects reflect the wide fluctuations of Z i Similar to high-T c materials, as seen by STM, tunneling (e.g. K. McElroy et al. Science 309, 1048 (2005)) Generic to the strongly correlated materials? Tallahassee Aspen Energy-resolved inhomogeneity!

Mottness-induced contrast

An electronic Griffiths phase emerges as a precursor to the disordered Mott MIT (non-Fermi liquid metal) Strong-correlation-induced healing of disorder at low energies, but very inhomogeneous away Infinite randomness fixed point: new type of critical behavior for disordered MIT??? (Weak) localization vs. interactions: is there a true 2D metal in D=2??? Conclusions and...

The physical picture Localization-induced electronic Griffiths phase (Miranda & Dobrosavljevic, 2001)

EGP sets in for W > W * = (  t 2  av J K ) 1/2 W*W* WcWc W MIT at W = W c ~ E F EGP always comes BEFORE the MIT Electronic Griffiths Phase in Kondo Alloys (Tanaskovic, Dobrosavljevic, Miranda; also Grempel et al.)

Similar non-Ohmic (strong) dissipation Quantum (S=1/2) spin dynamics (Berry phase) Local action: “Bose-Fermi (BF) Kondo model” (“E-DMFT”; A. Sengupta, Q. Si, Grempel,...) EGP +RKKY interactions: beyond semi-classical spins! (Tanaskovic, Dobrosavljevic, Miranda)!

BF model has a (local) phase transition for a sub-Ohmic dissipative bath (  > 0 ) g (RKKY coupling)  c J K (Kondo coupling) ~  Kondo screened spin fluid EGP model: distribution of Kondo couplings all the way to zero! A finite fraction of spins fall on each side of the critical line Kondo effect destroyed by dissipation on a finite fraction of spins Decoupled spins J K flows to zero; they form a spin fluid (Sachdev-Ye) (frustrated insulating magnet) disorder W MIT W*W* W1W1 insulator Fermi liquid NFL - spin fluid  > 0 “bare EGP” Destruction of the Kondo effect and two-fluid behavior

χ (T) ~ ln(T o /T) for spin fluid (decoupled spins) Finite (very low!!) temperature SG instability as soon as spins decouple Quantitative (numerical) results: fermionic large N approach ( Grempel et al.) - disorder Spin-glass (SG) instability of the EGP

Conclusions: In metals dissipation destroys QGP at lowest T → (quantum) glassy ordering Magnetic (QCP) QGP: → semi-classical dynamics at T > T G Fluctuation–driven first-order QCP of the “cluster glass” Spin liquid in EGP at T > T G