Physics 357/457 Spring 2011 (Chapter 1: getting started)  the elementary particles  the forces  the model  how can we understand it?

Slides:



Advertisements
Similar presentations
The search for the God Particle
Advertisements

Physics 357/457 Instructor: Barbara Hale, 205 Physics Text: Gordon Kane, Modern Elementary Particle Physics, Addison-Wesley,
The Standard Model and Beyond [Secs 17.1 Dunlap].
"Now I am become Death, the destroyer of worlds." Robert Oppenheimer after the first test of the atomic bomb.
Standard Model of Physics Project Supervisor: Dr. Babar Qureshi Project by: M. Anadil Saeed Occasional Helper: Dr. Amer Iqbal.
The Elementary Particles Santa Rosa Junior College Physics 4D – Younes Ataiiyan May 11 th 2006 Stephen Ngamate and Thomas Mutunga.
Option 212: UNIT 2 Elementary Particles Department of Physics and Astronomy SCHEDULE  5-Feb pm Physics LRA Dr M Burleigh Intro lecture  9-Feb-04.
27 km ring Large Hadron Collider went online on Sept
Smashing the Standard Model: Physics at the CERN LHC
The Ideas of Unified Theories of Physics Tareq Ahmed Mokhiemer PHYS441 Student.
Schlüsselexperimente der Elementarteilchenphysik:.
Modern Physics LECTURE II.
Lecture 3: The Standard Model
PHY 042: Electricity and Magnetism Introduction Prof. Pierre-Hugues Beauchemin.
Elementary particles atom Hadrons Leptons Baryons Mesons Nucleons
Fundamental Particles (The Standard Model) Nathan Brown June 2007.
An Introduction to Field and Gauge Theories
Wednesday, Mar. 23, 2005PHYS 3446, Spring 2005 Jae Yu 1 PHYS 3446 – Lecture #14 Wednesday, Mar. 23, 2005 Dr. Jae Yu Elementary Particle Properties Forces.
Particle Physics Professor Kay Kinoshita University of Cincinnati.
Option 212: UNIT 2 Elementary Particles Department of Physics and Astronomy SCHEDULE 26-Jan pm LRB Intro lecture 28-Jan pm LRBProblem solving.
Discovery of the Higgs Boson Gavin Lawes Department of Physics and Astronomy.
BY: BRETT SLAJUS Particle Physics. Standard Model of Elementary Particles Three Generations of Matter (Fermions)
My Chapter 30 Lecture.
2 nd Presentation of Prof. Cho’s Class Hossain Ahmed Introduction to Standard Model.
Point 1 activities and perspectives Marzio Nessi ATLAS plenary 2 nd October 2004 Large Hadron Collider (LHC)
Electroweak Theory Mr. Gabriel Pendas Dr. Susan Blessing.
1 FK7003 Elementary Particle Physics David Milstead A4:1021 tel: /
School of Arts & Sciences Dean’s Coffee Presentation SUNY Institute of Technology, February 4, 2005 High Energy Physics: An Overview of Objectives, Challenges.
Standard Model A Brief Description by Shahnoor Habib.
Higgs Boson-The God’s Particle & The mystery of mass Higgs Boson-The God’s Particle & The mystery of mass Dr.S.Sanyasi Raju Reader & H.O.D. of Physics.
Happyphysics.com Physics Lecture Resources Prof. Mineesh Gulati Head-Physics Wing Happy Model Hr. Sec. School, Udhampur, J&K Website: happyphysics.com.
Elementary particles and their forces -- how can we understand them and what do they imply about our early universe? Barbara Hale Physics Department Missouri.
Quarknet Syracuse Summer Institute Particle Physics Standard Model Introduction 1.
Title Page Paul Matteri.
Recreating the Big Bang with the World’s Largest Machine Prof Peter Watkins Head of Particle Physics Group The University of Birmingham Admissions Talk.
Fisica Generale - Alan Giambattista, Betty McCarty Richardson Copyright © 2008 – The McGraw-Hill Companies s.r.l. 1 Chapter 30: Particle Physics Fundamental.
A singularity formed by a previous collapsed Universe? Multiple Universes? We just don’t know… YET What Caused It?
GRIDFest, CERN, October 3, New Physics at the Large Hadron Collider Jos Engelen CERN a brief introduction.
Chapter 17 The Beginning of Time. Running the Expansion Backward Temperature of the Universe from the Big Bang to the present (10 10 years ~ 3 x
© John Parkinson 1 e+e+ e-e- ANNIHILATION © John Parkinson 2 Atom 1x m n n n n Nucleus 1x m U Quarks 1x m U D ? ? ?
Anthropology Series In the Beginning How did the Universe begin? Don’t know!
The Higgs Boson Observation (probably) Not just another fundamental particle… July 27, 2012Purdue QuarkNet Summer Workshop1 Matthew Jones Purdue University.
STANDARD MODEL class of “High Energy Physics Phenomenology” Mikhail Yurov Kyungpook National University November 15 th.
Phys 102 – Lecture 28 Life, the universe, and everything 1.
LESSON 3: INTERACTIONS What is an interaction? More about interactions. How do the particles actually interact? What is a Feynman diagram? Examples and.
ELECTROWEAK UNIFICATION Ryan Clark, Cong Nguyen, Robert Kruse and Blake Watson PHYS-3313, Fall 2013 University of Texas Arlington December 2, 2013.
Wednesday, Jan. 15, 2003PHYS 5396, Spring 2003 Jae Yu 1 PHYS 5396 – Lecture #2 Wednesday, Jan. 15, 2003 Dr. Jae Yu 1.What is a neutrino? 2.History of neutrinos.
1 Particle Physics, The Mysteries of the Universe, and The LHC Nhan Tran Johns Hopkins University.
1 The Standard Model of Particle Physics Owen Long U. C. Riverside March 1, 2014.
What is the Standard Model of Particle Physics ???? 1. A theory of three of the four known fundamental interactions and the elementary particles that.
Water ( H 2 O ) oxygen atom ( O ) proton ( p ) electrons ( e ) neutron ( n ) 3 quarks What the matters are made out of ? 3 quarks
Phy107 Fall From Last Time… Particles are quanta of a quantum field –Often called excitations of the associated field –Particles can appear and.
4th School on High Energy Physics Prepared by Ahmed fouad Qamesh Cairo university HIGGS BOSON RECONSTRUCTION.
 All elementary particles in physics are classified as either fermions or bosons. Quantum physics demonstrates the particles may have an intrinsic non-zero.
LECTURE 9 Chasing Relativistic Particles
Elementary Particle Physics
Introduction to the Standard Model
Physics 5333 Spring 2015 (Chapter 1: getting started)
Physics 357/457 Spring 2011 (Chapter 1: getting started)
Patterns in Baryons and Mesons
From Last Time… Discussed the weak interaction
Particle Physics what do we know?
Particle Physics Part 1 -James Joyce Contents: Particle Accelerators
SPH4U Elementary Particles.
Do Now An electron in a hydrogen atoms drops from n=5 to n=4 energy level. What is the energy of the photon in eV? What is the frequency of the emitted.
PHOTONICS What is it?.
From Last Time… Discussed the weak interaction
Introduction to Particle Physics
From Last Time… Discussed the weak interaction
Propagation and Antennas
Presentation transcript:

Physics 357/457 Spring 2011 (Chapter 1: getting started)  the elementary particles  the forces  the model  how can we understand it?

Elementary particle: an entity not able to be further decomposed with a unique set of properties mass, m charge, Q spin : s =½ integer (fermion), s = 0, 1, 2…(boson) flavor

spin, charge & mass(energy) Intrinsic property  “constituents” do not exist We don’t know how to account for the property by classical, quantum mechanical or relativistic (field theoretic) models

what is charge? Charge (Q) is a quantity we have defined in order to describe how certain particles (with this charge) interact. If the particles don’t interact in the prescribed way, they don’t have charge. The force, F, between two charges (and the classical mathematical model, Coulomb’s Law, kQ 1Q2 /r 2 ), was derived experimentally. Subsequent to this we developed the ideas of electric fields, E=Q 1 F electrostatic potentials, Ф, magnetic fields, B, (produced by moving charges) and ultimately, Maxwell’s equations, the most rigorous model in physics. These equations do not tell us what charge is. In fact, as is usually the case, the model led us to a startling new model (Quantum Electrodynamics) which “explains” why two charges interact: they exchange photons (a new kind of particle with no charge and travelling with the speed of light). Still, we do not know what charge is.

charge We do know that charge is “quantized”: it comes only in multiples of the electronic charge, e = 1.6 x Coulombs. Furthermore, the electron itself, although having both mass and charge, e, has a “size” so small that we are able only to say it is smaller than what we can detect! This is indeed a phenomenon!

the elementary particles (as far as we know at this time)  six quarks (u d c s t b)  six leptons (e e       ) all have spin = ½  they are fermions that’s it!

size Like the electron, these elementary particles have “sizes” smaller than we can detect. Another phenomenon!

Particle  Antiparticle Q  -Q m  m an antiparticle is like a particle going backwards in time

Building composite particles – with sizes we can detect: Quarks (q) can be bound together to form composite particles, like protons, neutrons and pions. But, we only find in the laboratory composite particles corresponding to quark-antiquark or qqq combinations. These composite particles of quarks are held together by the strong force mediated by the exchange of gluons. Like the electric charge producing Coulomb forces, the color “charge” is carried by the quarks.

the forces the forces  electromagnetic (photon)  weak ( W + W - Z 0 )  strong (8 gluons)  gravitational ( graviton not yet observed ) all have spin = 1 (or 2 for graviton)  they are bosons

some particle physics puzzles some particle physics puzzles While we have learned a great deal in the 20 th century, there are still many things which are not known.

/ Dark Energy:

/ Dark Energy What Is Dark Energy? More is unknown than is known. We know how much dark energy there is because we know how it affects the Universe's expansion. Other than that, it is a complete mystery. But it is an important mystery. It turns out that roughly 70% of theroughly 70% Universe is dark energy. Dark matter makes up about 25%. The rest - everything on Earth, everything ever observed with all of our instruments, all normal matter - adds up to less than 5% of the Universe. Come to think of it, maybe it shouldn't be called "normal" matter at all, since it is such a small fraction of the Universe.

According to observations of structures larger than galaxies, as well as Big Bang cosmology dark matter accounts for 23% of the mass-energy density of the observable universe. In comparison, ordinary matter accounts for only 4.6% of the mass-energy density of the observable universe, with the remainder being attributable to dark energy. From these figures, dark matter constitutes 80% of the matter in the universe, while ordinary matter makes up only 20%. Dark Matter

The Higgs mechanism is a “model ” in which vector bosons ( W +, W - and Z) can take on mass. Originally, they are massless. At a point in time, when kT ~ 100 GeV, they undergo a (symmetry breaking) transformation in which energy from the vacuum becomes particle mass. We will talk about it later. It was proposed in 1964 independently and almost simultaneously by three groups of physicists: François Englert and Robert Brout;, [5] by Peter Higgs, [6] [5] [6] (who was inspired by the ideas of Philip Anderson); and by Gerald Guralnik, C. R. Hagen, and Tom Kibble,. [7] [7] Higgs Mechanism

How can we understand all this? Feynman: we have to “imagine” what is going on – that is the difficult part. How can we understand all this? Feynman: we have to “imagine” what is going on – that is the difficult part. We “imagine” particle physics in terms of models, and one of these is the Standard Model (SM). Gluons and color charge and ideas of mass and the Higgs particle also require models – extensions of the SM. Since we need to use E = mc 2 (creation and annihilation of particles), we need to learn a bit about special relativity and how to express the important assumptions mathematically.

Particle chart source : Particle chart p357/457: Quarks info: Feynman on light: Feynman on quark confinement: Particle Adventure: (DOE and NSF funded) Major Accelerators: Where to find things

Physics 357/457 Instructor: Barbara Hale, 205 Physics Text: Gordon Kane, Modern Elementary Particle Physics, Addison-Wesley, New York, Updated Edition, It is not necessary to purchase a text. Copies of the lecture notes will available. Note below References which will be useful for extra reading on the topics A good reference for background material: David Griffiths, Introduction to Elementary Particle Physics, Wiley, New York.

Course Outline: 1. The elementary particles: Quarks and leptons 2. Field Theories, Quantum Electrodynamics (QED) and Feynman diagrams 3. Unification of the Weak and Electromagnetic Interactions 4. The Standard Model, gauge invariance and gauge bosons 5. The Gluons and the Strong Force 6. Grand unified theories and Beyond 7. Particle Physics and Cosmology

Course Structure There will be two exams (100 points each) plus a comprehensive final (150 points). Homework sets will count as one exam (100 points). Total points = = 450 points. 85% = A, 70% = B.

References for Elementary Particle Physics Topics 1.Donald Perkins, Introduction to High Energy Physics, Addison ‑ Wesley, New York (1987) 3rd Ed. [description of experiments & results; uses little field theory] 2. R. Hagedorn, Relativistic Kinematics, Benjamin, New York (1964) 3. I.J.R. Aitchison, An Informal Introduction to Gauge Field Theories, Cambridge University Press, London (1982) 4. Chris Quigg, Gauge Theories of the Strong, Weak and Electromagnetic Interactions, Frontiers in Physics Lecture Notes Series 56, Benjamin/Cummings, Reading Massachusetts (1983) [advanced] 5. P. Becher, M. Bohm and H. Joos, Gauge Theories of Strong and Electroweak Interactions, Wiley, New York (1984) [advanced]

6. Elliot Leader and Enrico Predazzi, An Introduction to Gauge Theories and the 'New Physics', Cambridge University Press, Cambridge (1983) [advanced] 7. Kurt Gottfried and Victor F. Weisskopf, Concepts of Particle Physics, Oxford Press, New York (1984) [written for nonspecialists] 8. Particles and Fields, Readings from Scientific American, W. H. Freeman and Co. (1980) [ a good introduction; written for nonspecialists; see also other recent articles appearing in Scientific American] 9. F. Halzen and Alan D. Martin, Quarks and Leptons, John Wiley & Sons (1984) 10. New Particles Edited by J. L. Rosner, American Association of Physics Teachers (AAPT) Reprint Books, (1981) [good review of the history of particle discoveries up to 1981; also has some 'famous' reprints]

11. Steven Weinberg, The Discovery of Subatomic Particles, (a Scientific American Book) W. H. Freeman (1983) [historical approach; for nonspecialist] 12. L. B. Okun, Leptons and Quarks, North Holland, New York (1982) [ advanced ] 13. P. Collins, A. Martin and E. Squires, Particle Physics and Cosmology, John Wiley and Sons, New York (1991) 14. Stephen W. Hawking, A Brief History of Time, Bantam, New York (1988) 15. Sheldon Glashow, Interactions, Warner, New York (1988) 16. Steven Weinberg, The First Three Minutes, Bantam, New York (1977)

17. Quarks, Quasars and Quandries, Ed. G. Aubrecht, Published by American Assoc. Physics Teachers 5112 Berwyn Rd., College Park, MD (1987) (You can also purchase a poster from the publisher.) 18. Gordon Kane, Modern Elementary Particle Physics, Addison ‑ Wesley, New York (1987), updated David Griffiths, Introduction to Elementary Particle Physics, Wiley, New York (1987) 20. W. S. C. Williams, Nuclear and Particle Physics, Clarendon Press, Oxford (1991) 21. P. E. Hodgson, Nuclear Reactions and Nuclear Structure, Clarendon Press, Oxford (1971) 22. J. M. Blatt and V. F. Weisskopf, Theoretical Nuclear Physics, John Wiley & Sons, New York (1952)

23. John C. McGervey, Introduction to Modern Physics, Academic Press, New York Second Edition (1983) Chapters 10, 13 ‑ Arthur Beiser, Perspectives of Modern Physics, McGraw ‑ Hill, New York (1969) Chapters 21 ‑ 24 Old book, simple explanations. 25. Robert Eisberg and Robert Resnick, Quantum Physics of Atoms, Molecules, Solids, Nuclei and Particles, John Wiley and Sons (1985) Chapters 15 and Robert Mann, An Introduction to Particle Physics and the Standard Model, CRC Press, 2010, good reference. 27. B. R. Martin and G. Shaw, Particle Physics, Wiley, NY 2008

MORE: Dark Matter, Dark Energy (NOVA): Dark Energy: Feynman: Numbers 2 Feynman: Numbers 1 Feynman: Electricity Feynman, counting and thinking: