Genetic Engineering 13-1 Changing the Living World Selective Breeding Hybridization Inbreeding Increasing Variation 13-2 Manipulating DNA The Tools of.

Slides:



Advertisements
Similar presentations
Chapter 13 Genetic Engineering
Advertisements

15.2 Recombinant DNA.
Biotechnology Chapter 11.
Frontiers of Biotechnology Chapter 9 Mr. Scott. Manipulating DNA How can scientists manipulate the code? Scientists use their knowledge of the structure.
Genetic Engineering Genetic Engineers can alter the DNA code of living organisms. Selective Breeding Recombinant DNA Gel Electrophoresis Transgenic Organisms.
Chapter 13 Genetic Engineering
CHAPTER 13 GENETIC ENGINEERING
Abraham Lincoln – Marfan Syndrome Emily Dickinson – Manic Depression
Chapter 13 – Genetic Engineering L2 Biology Has Bonnie been bred by selective breeding?
Genetic Engineering Chapter 13 (Sections 1, 2 and 4)
Ch. 13 Genetic Engineering
Chapter 13 Genetic Engineering.
Ch 13 Genetic Engineering
Chapter 13 Genetic Engineering Selective Breeding- choosing what parents you want to produce offspring for the next generation. What do get when you cross.
SC B-4.9 EXEMPLIFY WAYS THAT INTRODUCE NEW GENETIC CHARACTERISTICS INTO AN ORGANISM OR A POPULATION BY APPLYING THE PRINCIPLES OF MODERN GENETICS GENETIC.
Genetic Engineering. Selective Breeding Have you ever seen a dog show on tv? How many different types of dogs were there?!
Chapter 13 GENETIC ENGINEERING.
Biotechnology. Early Biotechnology = using organisms or their cellular processes to improve the lives and health of people and the planet Has evolved.
Chapter 13 Genetic Engineering. This genetically engineered plant Glows-in-the-Dark!
13–1Changing the Living World A.Selective Breeding 1.Hybridization 2.Inbreeding B.Increasing Variation 1.Producing New Kinds of Bacteria 2.Producing New.
Genetic Engineering Regular Biology. Selective Breeding  This is the process of allowing those organisms with specific characteristics to reproduce 
Genetic Engineering Genetic Engineers can alter the DNA code of living organisms. Selective Breeding Recombinant DNA PCR Gel Electrophoresis Transgenic.
Chapter 13 Genetic Engineering. (Ch. 13) Selective breeding allowing animals with desired characteristics to produce the next generation Pass on the.
Copyright Pearson Prentice Hall DNA Technology. Copyright Pearson Prentice Hall Selective Breeding Selective breeding allows only those organisms with.
End Show Slide 1 of 32 Copyright Pearson Prentice Hall Manipulating DNA.
CHAPTER 13 – GENETIC ENGINEERING
13-1 Changing the Living World
End Show Slide 1 of 21 Copyright Pearson Prentice Hall 13-3 Cell Transformation Recombinant DNA Host Cell DNA Target gene Modified Host Cell DNA.
Genetic Mutations & Genetic Engineering Ch (pgs ) Ch thru 13-4 (pgs )
Chapter 13: Genetic Engineering Standard 5.c Students will know how genetic engineering (biotechnology)is used to produce novel biomedical and agriculture.
Genetic Engineering Genetic Engineering is the process of making changes in the DNA code of living organisms. Genetic Engineering and DNA Technology can.
Artificial Selection and Genetic Engineering Selective Breeding Choosing the BEST traits for breeding. Most domesticated animals are products of selective.
Genetic Engineering Chapter 13.
CHANGING THE LIVING WORLD OBJECTIVES: 13.1 Explain the purpose of selective breeding. Describe two techniques used in selective breeding. Tell why breeders.
Chapter 13 Genetic Engineering.
Genetic Engineering. I. Changing the Living World A. Humans are the ones responsible for directing the change among domestic animals and plants. B. The.
Genetic Engineering How do scientists make changes to DNA?
A Brave New World.
DNA Technology. Techniques in DNA technology Restriction enzymes Gel electrophoresis PCR – polymerase chain reaction Recombinant DNA.
Genetic Engineering Chapter 13 Test on Friday 03/13/09 Reviewing Content Due 03/12/ and #28.
CHAPTER 13 Standard 4.9 Genetic Engineering How can humans manipulate DNA?
Genetic Engineering Genetic Engineers can alter the DNA code of living organisms. Selective Breeding Recombinant DNA PCR Gel Electrophoresis Transgenic.
Genetic Engineering Applications. Using your knowledge of genetic engineering, explain how the plant and dog glow. A firefly’s gene (for the enzyme luciferase)
Chapter 13 Changing the Living World. Selective Breeding and Hybridization  Selective Breeding  Allowing only those organisms with desired characteristics.
Ch. 13 Genetic Engineering
Genetic Engineering and Biotechnology. Genetic Engineering Genetic Engineering: a sequence of DNA (gene) from one organism is: identified, cut and removed.
13.1 CHANGING THE LIVING WORLD 13.2 MANIPULATING DNA 13.3 CELL TRANSFORMATION 13.4 APPLICATION OF GENETIC ENGINEERING CH 13 GENETIC ENGINEERING.
Chapter 13 Genetic Engineering Changing the Living World Humans use selective breeding, which takes advantage of naturally occurring genetic variation.
Chapter 13 Genetic Engineering.
Chapter 13 Genetic Engineering
GENETIC ENGINEERING Chapter 13.
Ch. 13Genetic Engineering
13-1 Genetic Engineering.
Genetic Engineering Genetic Engineers can alter the DNA code of living organisms. Selective Breeding Recombinant DNA PCR Gel Electrophoresis Transgenic.
Chapter 13 Genetic Engineering.
Chapter 13 Genetic Engineering
Genetic Engineering Chapter 15.
Genetic Engineering 13-1 Changing the Living World Selective Breeding
DNA Technology.
DNA Technology.
Genetic Engineering How can humans manipulate DNA?
Chapter 13 – Genetic Engineering
Genetic Engineering Genetic Engineering is the process of making changes in the DNA code of living organisms. Genetic Engineering and DNA Technology can.
Topic: Genetic Engineering Aim: How do scientists alter(change) the DNA make up of living organisms? Genetic Engineers can alter the DNA code of living.
Changing the Living World & Manipulating DNA
Ch. 13 Genetic Engineering
Changing the Living World
13.1 Changing the Living World
Chapter 13 Genetic Engineering
Frontiers of Biotechnology
Presentation transcript:

Genetic Engineering 13-1 Changing the Living World Selective Breeding Hybridization Inbreeding Increasing Variation 13-2 Manipulating DNA The Tools of Molecular Biology DNA Extraction Cutting DNA Separating DNA Using the DNA Sequence Reading the Sequence Cutting and Pasting Making Copies 13-3 Cell Transformation Transforming Bacteria Transforming Plant Cells Transforming Animal Cells 13-4 Applications of Genetic Engineering Transgenic Organisms Transgenic Microorganisms Transgenic Animals Transgenic Plants Cloning

Changing the Living World Genetic engineering is the alteration of genetic code by artificial means, and is therefore different from traditional selective breeding. Only allowing desired characteristics to reproduce.genetic Scorpion poison DNA is located and inserted into cabbage DNA. Cabbage kills caterpillars (insecticide).

Selective breeding Hybridization - the act or process of mating organisms of different varieties or species to create a hybrid.specieshybrid

Selective Breeding Hybridization cont. Insecticide resistant crops Herbicide resistant crops Vitamin enriched crops Maize streak virus symptoms in a commercial maize field in Klerksdorp, NorthWest South Africa, showing chlorotic streaking and deformed cob development. This farm grew USA commercial hybrids and experienced almost total yield losses.

Selective Breeding Inbreeding-is the continued breeding of individuals with similar characteristics. Pros- maintains characteristics of the breed Cons- genetic defects more common

Increasing Variation In nature there is a lot of genetic variation found in wild natural populations. Breeders can increase variation by inducing mutations. Ex. Belgium Blue – myostatin muscle mutation

Increasing Variations with Mutations Oil eating bacteria strains created using mutations

Increasing Variation…. with mutations Plants have success by introducing more chromosomes (mutation). Polyploidy is caused by drugs that double or triple the amount of chromosomes. The effect causes larger and stronger plants. Citrus fruits, bananas Not successful with animals

Manipulating DNA Scientists use their knowledge of the structure of DNA and its chemical properties to study and change DNA molecules. Different techniques are used to extract DNA from Cells.

Manipulating DNA Different techniques are used to : extract DNA from cells cut DNA into smaller pieces identify the sequence of bases in a DNA molecule make unlimited copies of DNA.

The Tools of Molecular Biology Genetic Engineering – making changes in the DNA code DNA Extraction – The cells are opened and the DNA is separated from the other cell parts.

The Tools of Molecular Biology Cutting DNA DNA strands are too long to work with so scientists use restriction enzymes to cut DNA into fragments, at precise points, on the DNA strand. Fits like a “lock and key” when the DNA is opened.

The Tools of Molecular Biology Separating DNA How DNA is separated and analyzed Gel electrophoresis- used to compare genomes or gene composition of different organisms or individuals

Using the DNA Sequence Once DNA is in a manageable form, it sequence can be read, studied, and even changed. Knowing the DNA sequence allows researchers to study specific genes, to compare them, and to try to discover the functions of different genes and gene combinations.

Using the DNA Sequence A chemical dye is added as a marker on bases to help read the DNA sequence before electrophoresis is started.

Using the DNA Sequence Cutting and Pasting “Synthetic” sequences can be joined to “natural” sequences using enzymes that splice DNA together. It’s like taking a gene from one organism and implanting it in another organism. Recombinant DNA is produced by combining DNA from different sources.

Using the DNA Sequence Making Copies Scientists need many copies of a particular gene to study Polymerase Chain Reaction (PCR) is a technique used to make DNA copies.

Cell Transformation During transformation, a cell takes in DNA from outside the cell. This external DNA becomes a component of the cell’s DNA. -ex. Griffith’s experiment, in 1928, proved bacteria could transform DNA

Griffith’s Experiment

Transforming Bacteria Bacteria can be transformed using recombinant DNA Foreign DNA is joined to the bacteria’s DNA in the Plasmid. Plasmid’s contain DNA in the bacteria -contains DNA sequences that promotes plasmid replication -Plasmid’s contain genetic markers making it easy to identify transformed bacteria.

Transforming Plant Cells Many plants are transformed by using bacteria that insert their DNA into a plant cell to produce tumors 1) Scientists turn off the gene for tumors and insert recombinant DNA into the plasmid. 2) Then the recombinant plasmid can be used to infect plant cells

Transforming Plant Cells cont… When plant cell walls are removed, plant cells in culture will sometimes take up DNA on their own. -DNA can also be injected into some plant cells. Tobacco plant cells transformed with reprogrammed virus. Virus makes chromophores to get energy from the sun to be used in solar panels.

Transforming Animal Cells Animal cells can be transformed in some of the same ways as plant cells Egg cells can be injected w/foreign DNA into the nucleus Foreign DNA contains markers for identification by scientists Genes can be replaced with new genes Great for figuring out the specific functions of genes

Applications of Genetic Engineering Genetic engineering makes it possible to transfer DNA sequences, including whole genes, from one organism to another. -including plants to animals -Enzyme luciferase, gene fireflys glow, combined with tobacco plant Proved that the basic mechanisms of gene expression are shared by plants and animals.

Transgenic Organisms DNA allows us to construct organisms that are transgenic. Transgenic means that organisms contain genes from other species. Transformed cells can create whole new organisms ex. Glow in dark cats, transgenic salmon compared to regular salmon after one yr.

Transgenic Microorganisms Transgenic bacteria used to create important substances useful in health and industry -reproduce rapidly -easy to grow -cheap ex. Insulin, growth hormone, clotting factor, Pic- chickens that can’t pass the bird flu

Transgenic Animals Pic – turned off myostatin gene more muscle with-out more food Used to study genes and to improve the food supply Mice given human genes to mimic our immune systems to study diseases Livestock given extra growth hormone to grow faster Chickens bacterial resistant to bacteria that cause food poisoning Sheep and pigs make human milk (proteins)

Transgenic Plants Important part of the food supply Insecticide and herbicide resistant Food with more vitamins (Vit.A rice) May soon produce -human antibodies that can be used to fight disease -Plastics from plants (maybe)? - Food resistant to rot and spoilage

Cloning A clone is a member of a population of genetically identical cells produced from a single cell. Bacteria are easy to clone Multi-cellular organisms are more difficult to clone Help save endangered species 1997 William Wilmut cloned Dolly