10/13/08 GCF, LCM Word Problems #20

Slides:



Advertisements
Similar presentations
GCF and LCM Section 2.3 Standards Addressed: A , A
Advertisements

Preview Warm Up California Standards Lesson Presentation.
Preview Warm Up California Standards Lesson Presentation.
BLACKOUT.
PRIME FACTORIZATION GCF & LCM
/8/08 GCF, LCM Using Prime Factors #19
10/2/ Combining Like Terms #16
Chapter 2 Practice Test Mastery Test A
Least Common Multiple (LCM) of
Greatest Common Factor
Homework Expectations
Chapter 7.3 Least Common Multiple and Greatest Common Factor
Warm Up Problem of the Day Lesson Presentation Lesson Quizzes.
Factors & Multiples Lesson 1 - Factors & GCF
NS2.4 Determine the least common multiple and the greatest common divisor of whole numbers; use them to solve problems with fractions (e.g. to find a.
2-6 Prime Factorization Warm Up Problem of the Day Lesson Presentation
Which is greater, or ? Comparing and Ordering Rational Numbers COURSE 3 LESSON Rewrite each fraction with the denominator 9 11 = 99. Multiply.
Page 158 #9-24 ANSWERS.
11-2 Solving Multistep Equations Course 2 Warm Up Warm Up Problem of the Day Problem of the Day Lesson Presentation Lesson Presentation.
Retakes: -Quiz corrections due TOMORROW -Retakes Friday at lunch Quiz: -Friday quiz on LCM, GCF, and prime factorization. -Friday is assignment redo cutoff.
Warm Up Problem of the Day Lesson Presentation Lesson Quizzes
Finding the LCM (least common multiple) and GCF (greatest common factor)
1-1 Comparing and Ordering Whole Numbers Course 1 Warm Up Warm Up Lesson Presentation Lesson Presentation Problem of the Day Problem of the Day.
Page 169 #12-33 ANSWERS.
NS2.4 Determine the least common multiple and the greatest common divisor of whole numbers; use them to solve problems with fractions (e.g. to find a.
Holt CA Course Least Common Multiple NS2.4 Determine the least common multiple and the greatest common divisor of whole numbers; use them to solve.
3-1 Prime FactorizationPrime Factorization 3-2 Greatest Common DivisorGreatest Common Divisor 3-3 Least Common MultipleLeast Common Multiple 3-4 Equivalent.
Today’s Plan: -Solving Equations w/ decimals -Assignment 11/29/10 Solving Equations with Decimals Learning Target: -I can solve equations containing decimals.
Holt CA Course Greatest Common Divisor Warm Up Warm Up California Standards Lesson Presentation Preview.
Learn to find the greatest common factor of two or more whole numbers. Course Greatest Common Factor.
PRE-ALGEBRA. Lesson 5-1 Warm-Up PRE-ALGEBRA “Comparing and Ordering Rational Numbers” (5-1) What is the a “multiple”? What is the the “least common multiple”
ALGEBRA READINESS LESSON 4-2 Warm Up Lesson 4-2 Warm Up.
Carol Chervenak Finding the Greatest Common Factor (GCF) and the Least Common Multiple (LCM) using Prime Factorization! No need to make lists like you.
3-8 Adding and Subtracting Fractions Course 2 Warm Up Warm Up Problem of the Day Problem of the Day Lesson Presentation Lesson Presentation.
Page 154 #9-28 ANSWERS.
6 th Grade Math HOMEWORK Page #10-12 & Course Making Predictions.
Holt CA Course Greatest Common Divisor Warm Up Warm Up California Standards California Standards Lesson Presentation Lesson PresentationPreview.
Learn to translate words into numbers, variables, and operations. 9/30/08 From Words to Math #14.
Warm Up Solve, showing all steps. 1. n + 9 = x = – z = n = 8 x = 7 z = 16 Course Solving Two-Step Equations = 9 y = 72 y8y8.
Defining Success Lesson 14-Finding the Greatest Common Factor Problem Solved!
Least Common Multiples and Greatest Common Factors Lesson 4.3.
It starts exactly like GCF! LET’S MOVE ON TO LEAST COMMON MULTIPLE!
Pre-Algebra Lesson 5-1 Today, the school’s baseball and soccer teams had games. The baseball team plays every 7 days. The soccer team plays every 3 days.
Page 162 #8-18 ANSWERS Student Progress Learning Chart Lesson Reflection for Chapter 4 Section 4.
2-6 Least Common Multiple Course 2 Warm Up Warm Up Problem of the Day Problem of the Day Lesson Presentation Lesson Presentation.
Learn to find the least common multiple of two or more whole numbers. Course Least Common Multiple.
January 23, 2012 Warm-Up GCF Word Problem Simplifying Fractions Exit Ticket.
Finding Greatest Common Factor
Fraction Jeopardy LCM GCF $100 $200 $300 $400 $500 $600 $700 Add it up
Warm Up Write the prime factorization of each number
Preview Warm Up California Standards Lesson Presentation.
Solving Multi-Step Equations
Fraction Review.
Fraction Review.
PRIME FACTORS.
Lesson 4.1 How do you write the prime factorization of a number?
Prime Factorization Course
Least common multiple Lesson 1.3.
Comparing and Ordering Rational Numbers
Adding and Subtracting Fractions
Lesson Quizzes Standard Lesson Quiz
Greatest Common Factor
GCF and LCM.
Finding the Greatest Common Factor (GCF)
Greatest Common Factor (GCF)
Elementary Mathematics
Finding the LCM and the GCF Using Prime Factorization
Least Common Multiples and Greatest Common Factors
Finding the Greatest Common Factor (GCF)
Presentation transcript:

10/13/08 GCF, LCM Word Problems #20 Warm-up Nicholas bikes every third day and skates every other day. Today is April 5, and Nicholas biked and skated. On what date will he both bike and skate? April 11 Today’s Plan: Warm-up and tests back GCF & LCM word problems Assignment:Problem Solving 2-5 & 2-6 Both sides, odds or evens all on graph paper showing all work including factor tree and prime factorization line up.

Additional Example 3: Problem Solving Application Course 2 2-5 Greatest Common Factor Additional Example 3: Problem Solving Application You have 120 red beads, 100 white beads, and 45 blue beads. You want to use all the beads to make bracelets that have red, white, and blue beads on each. What is the greatest number of matching bracelets you can make?

Understand the Problem Course 2 2-5 Greatest Common Factor Additional Example 3 Continued 1 Understand the Problem Rewrite the question as a statement. • Find the greatest number of matching bracelets you can make. List the important information: • There are 120 red beads, 100 white beads, and 45 blue beads. • Each bracelet must have the same number of red, white, and blue beads. The answer will be the GCF of 120, 100, and 45.

Additional Example 3 Continued Course 2 2-5 Greatest Common Factor Additional Example 3 Continued 2 Make a Plan You can list the prime factors of 120, 100, and 45 to find the GFC. Solve 3 120 = 2 · 2 · 2 · 3 · 5 100 = 2 · 2 · 5 · 5 45 = 3 · 3 · 5 The GFC of 120, 100, and 45 is 5. You can make 5 bracelets.

Additional Example 3 Continued Course 2 2-5 Greatest Common Factor Additional Example 3 Continued Look Back 4 If you make 5 bracelets, each one will have 24 red beads, 20 white beads, and 9 blue beads, with nothing left over.

Insert Lesson Title Here Course 2 2-5 Greatest Common Factor Insert Lesson Title Here Try This: Example 3 Nathan has made fishing flies that he plans to give away as gift sets. He has 24 wet flies and 18 dry flies. Using all of the flies, how many sets can he make?

Understand the Problem Course 2 2-5 Greatest Common Factor Insert Lesson Title Here Try This: Example 3 Continued 1 Understand the Problem Rewrite the question as a statement. • Find the greatest number of sets of flies he can make. List the important information: • There are 24 wet flies and 18 dry flies. • He must use all of the flies. The answer will be the GCF of 24 and 18.

Try This: Example 3 Continued Course 2 2-5 Greatest Common Factor Try This: Example 3 Continued 2 Make a Plan You can list the prime factors of 24 and 18 to find the GCF. Solve 3 24 = 2 · 2 · 2 · 3 18 = 2 · 3 · 3 Multiply the prime factors that are common to both 24 and 18. 2 · 3 = 6 You can make 6 sets of flies.

Greatest Common Factor Insert Lesson Title Here Course 2 2-5 Greatest Common Factor Insert Lesson Title Here Try This: Example 3 Continued Look Back 4 If you make 6 sets, each set will have 3 dry flies and 4 wet flies.

Greatest Common Factor Insert Lesson Title Here Course 2 2-5 Greatest Common Factor Insert Lesson Title Here Lesson Quiz: Part 2 The math clubs from 3 schools agreed to a competition. Members from each club must be divided into teams, and teams from all clubs must be equally sized. What is the greatest number of members that can be on a team if Georgia has 16 members, William has 24 members, and Fulton has 72 members? 8

Insert Lesson Title Here Course 2 2-6 Least Common Multiple Insert Lesson Title Here Try This: Example 3 Two satellites are put into orbit over the same location at the same time. One orbits the earth every 24 hours, while the second completes an orbit every 18 hours. How much time will elapse before they are once again over the same location at the same time? Find the LCM of 24 and 18. 24 = 2 · 2 · 2 · 3 18 = 2 · 3 · 3 The LCM is 2 · 2 · 2 · 3 · 3 = 72.