Multiple indicator frameworks for assessment and precautionary management Mike Smith.

Slides:



Advertisements
Similar presentations
Ecosystem Processes ECOSYSTEM DEFINITION
Advertisements

Overview of Alaska Ecosystem Indicators Relative to EAM/EAF Objectives
Indicators for ecosystem based management: Methods and applications Verena Trenkel, Anik BrindAmour, Pascal Lorance, Stéphanie Mahevas, Marie-Joëlle Rochet.
Standardized Scales.
Integrating the gender aspects in research and promoting the participation of women in Life Sciences, Genomics and Biotechnology for Health.
EAFM & Risk Assessment Prioritizing Assessments Prof. Dr. Sahar Mehanna Head of Fish Population Dynamics Lab.
A HARVEST STRATEGY COMPLIANT WITH THE PRECAUTIONARY APPROACH Canadian Science Advisory Secretariat Science Advisory Report 2006/023 (Drafted by members.
Fishery indicators V.Raykov,IO-BAS
Lesson 3 ODOT Analysis & Assessment. Analysis & Assessment Learning Outcomes As part of a small group, apply the two- part analysis by generating exposure-
MSFD Indicators and Reference Points for Data-Limited Stocks Rainer Froese GEOMAR ICES MSFD Workshop, Copenhagen 13 January 2014.
Towards Healthy Stocks and Healthy Profits in European Fisheries Rainer Froese IFM-GEOMAR Presentation at Hearing „How much fish.
UNIT 4: Ecosystem Approach to Fisheries Management - EAFM.
By, Deepak George Pazhayamadom Emer Rogan (Department of ZEPS, University College Cork) Ciaran Kelly (Fisheries Science Services, Marine Institute) Edward.
Icelandic cod HCR - lessons learned Einar Hjörleifsson Marine Research Institute Reykjavík, Iceland.
The Good, the Bad, the Worrisome A Critical Look at the New Common Fisheries Policy of the EC Rainer Froese Presentation at the 2013.
SKAGERRAK PLAICE WORKSHOP Charlottenlund, 16. April 2013.
458 Population Projections (policy analysis) Fish 458; Lecture 21.
Generic Harvest Control Rules for European Fisheries Rainer Froese, Trevor A. Branch, Alexander Proelß, Martin Quaas, Keith Sainsbury & Christopher Zimmermann.
Review of approach 24 March 2015
Environmental health indicators Caroline Wicks March 17, 2006 Cooperative Oxford Laboratory.
1 Indicators for fisheries management: a French experience Marie-Joëlle Rochet, Verena Trenkel, Jean- Charles Poulard, and Jacques Bertrand Robert Bellail,
Fuzzy Traffic Light Methods by W. Silvert, IPIMAR, Portugal and P. Fanning, R. Halliday, and R. Mohn DFO, Canada.
1 Fisheries sustainability – CFP directions, MSFD descriptors and CSI Poul Degnbol Head of ICES advisory programme / ETC/W Marine and Coastal EEA/EIONET.
Descriptor 3 for determining Good Environmental Status (GES) under the MSFD was defined as “Populations of all commercially exploited fish and shellfish.
Status of Exploited Marine Fishes and Invertebrates in German Marine Waters Rainer Froese, GEOMAR Cluster Meeting ökosystemgerechte Fischerei Bundesamt.
Incorporating Ecosystem Objectives into Fisheries Management
60º Introduction and Background ù The Barents Sea covers an area of about 1.4 x 10 6 km 2, with an average depth of 230 m. ù Climatic variations depend.
Stock assessment, fishery management systems, and the FMSP Tools -- Summary -- FMSP Stock Assessment Tools Training Workshop Bangladesh 19th - 25th September.
WP4: Models to predict & test recovery strategies Cefas: Laurence Kell & John Pinnegar Univ. Aberdeen: Tara Marshall & Bruce McAdam.
Classroom Assessment A Practical Guide for Educators by Craig A
AdriaMed Expert Consultation Interactions between capture fisheries and aquaculture Rome, Italy November st Coordination Committee (2000)
1 1 Ingolf Røttingen The establishment and use of the agreed HCR for Norwegian spring sapawning herring Harvest control rules for sustainable fisheries.
Pacific Hake Management Strategy Evaluation Joint Technical Committee Northwest Fisheries Science Center, NOAA Pacific Biological Station, DFO School of.
MESH UK Workshop 19 October 2006 Introduction Dr Paul Gilliland Marine Policy Adviser and MESH Partner Lead Natural England.
Canada’s Ocean Strategy. The Oceans Act In 1997, Canada entrenched its commitment to our oceans by adopting the Oceans Act. In 1997, Canada entrenched.
Pacific Hake Management Strategy Evaluation Joint Technical Committee Northwest Fisheries Science Center, NOAA Pacific Biological Station, DFO School of.
A REVIEW OF BIOLOGICAL REFERENCE POINTS AND MANAGEMENT OF THE CHILEAN JACK MACKEREL Aquiles Sepúlveda Instituto de Investigación Pesquera, Av. Colón 2780,
Empirical and other stock assessment approaches FMSP Stock Assessment Tools Training Workshop Bangladesh 19 th - 25 th September 2005.
UNIT 8: Fisheries assessments. 2 Fisheries data Why do we need fisheries data? FAO (2005): “Information is critical to EAF. It underpins the formulation.
1 The IMAGE project I ndicators for fisheries MA naGement in E urope A specific targeted research project under the European Commission 6 th framework.
Assessing Linkages between Nearshore Habitat and Estuarine Fish Communities in the Chesapeake Bay Donna Marie Bilkovic*, Carl H. Hershner, Kirk J. Havens,
ALADYM (Age-Length Based Dynamic Model): a stochastic simulation tool to predict population dynamics and management scenarios using fishery-independent.
Why Does NOAA Need a Climate & Ecosystem Demonstration Project in the California Current System? Capabilities and Drivers La Jolla, CA 6 June, 2005.
Should we integrate assessments of the state-based descriptors? YES – Considering that the MSFD is underpinned by ecosystem management approach, it is.
The management of small pelagics. Comprise the 1/3 of the total world landings Comprise more than 50% of the total Mediterranean landings, while Two species,
1 NOAA Priorities for an Ecosystem Approach to Management A Presentation to the NOAA Science Advisory Board John H. Dunnigan NOAA Ecosystem Goal Team Lead.
Mrs Nafisat Bolatito IKENWEIWE (PhD) DEPARTMENT OF AQUACULTURE AND FISHERIES MANAGEMENT UNIVERSITY OF AGRICULTURE, ABEOKUTA FISH STOCK ASSESSMENT
Fisheries 101: Modeling and assessments to achieve sustainability Training Module July 2013.
ECOSYSTEM APPROACH TO MANAGEMENT OF HUMAN ACTIVITIES ICES cooperative research report.
Harvest control rules in context – limits, possibilities and the ICES experience Poul Degnbol IFM, Denmark & ICES Workshop on Harvest Control Rules for.
Air Toxics Risk Assessment: Traditional versus New Approaches Mark Saperstein BP Product Stewardship Group.
Balanced Harvesting: Not Supported by Science Rainer Froese GEOMAR, Kiel, Germany Pew Fellows Meeting, Rio Grande 16 October 2015.
SQO 4/7/05 INCORPORATING MULTIPLE LINES OF EVIDENCE INTO SEDIMENT QUALITY OBJECTIVES Stephen B. Weisberg Southern California Coastal Water Research Project.
Management Strategy Evaluation (MSE) Bob O’Boyle & Tana Worcester Bedford Institute of Oceanography Dartmouth, Nova Scotia, Canada.
Petter Nielsen Information Systems/IFI/UiO 1 Systems development Methodologies IN364.
1 Federal Research Centre for Fisheries Institute for Sea Fisheries, Hamburg Hans-Joachim Rätz Josep Lloret Institut de Ciències del Mar, Barcelona Long-term.
1 Climate Change and Implications for Management of North Sea Cod (Gadus morhua) L.T. Kell, G.M. Pilling and C.M. O’Brien CEFAS, Lowestoft.
PRINCIPLES OF STOCK ASSESSMENT. Aims of stock assessment The overall aim of fisheries science is to provide information to managers on the state and life.
Fish stock assessment Prof. Dr. Sahar Mehanna National Institute of Oceanography and Fisheries Fish population Dynamics Lab November,
Classroom Assessment A Practical Guide for Educators by Craig A
Sophie Gourguet, O. Thébaud
Policy Evaluation II (Feedback strategies)
MSFD Indicators and Reference Points for Data-Limited Stocks
Day 2 Session 2 Biological reference points - Supplementary
EEA - EMMA Workshop November 20-21, 2006 EEA, Copenhagen
Presentation to the MSFD Descriptor 3+ Meeting
Marine Strategy Framework Directive Descriptor 3+
United Nations Statistics Division
Technical Briefing Northern Shrimp Stock Assessment
Presentation transcript:

Multiple indicator frameworks for assessment and precautionary management Mike Smith

Precautionary approach Implies that: a lack of full scientific certainty must not be used as a reason for postponing cost effective measures to prevent environmental degradation” (Principle 15, Rio de Janeiro Declaration; FAO, 1995) The PA requires the following tasks to be accomplished: Establishment of management objectives Specification of information required Assessment of the state of the stock, putting in evidence sources of uncertainty Definition of the rules for management decisions, which should be robust to uncertainty and incomplete knowledge on factors such as stock identity and dynamics and the effects of environment (FAO, 1995). Multiple indicator approaches (including TL systems) can provide a means of incorporating the above features for systems where data do not permit more sophisticated analytical stock assessments in support of management rules.

Multiple indicator frameworks Enable the synthesis of signals from a range of sometimes empirical indices and indicators by converting them into qualitative (or very simple scaled) terms (e.g. good, moderate, bad), such that they can then all be considered on the same scale. A framework to assemble, consider and combine data consisting of (time series of) indices or indicators that can inform on stock and fishery health (and potential) and provide a means for assessment and informing management They utilise relatively simple scoring systems, applied to each indicator to provide indications of stock and fishery health. Such scoring systems might include distributional thresholds (e.g. quantiles) and approaches such as fuzzy set theory/logic can be used (e.g. to soften knife edged thresholds). Scoring of individual indicator/indices or of compound signals may be conditional on the score or trend of another indicator/index. The choice of which indicators/indices to use and/or the weighting of their scores into compound signals is crucial to the overall outcome and could introduce subjectivity.

Indicators Indicators are defined as variables, pointers or indices of a phenomenon (Garcia et al. 2000). They can support the decision making process by: (i) describing the pressures affecting the ecosystem, the state of the ecosystem and the response of managers, (ii) tracking progress towards meeting management objectives (iii) communicating trends in complex impacts and management processes to a nonspecialist audience (Garcia et al. 2000; Rice 2000, 2003; Rochet and Trenkel 2003). As attributes (of a pressure, state, response system ) may not be directly measurable, indicators can act as proxies for them (Fulton et al. 2004a,b). However, for indicators to support management decision making, the relationship between the indicator current value and/or trend and the value and/or trend of the variable (or indicator) associated with meeting the operational objective needs to be known (Jennings, 2005). Most research has focussed on indicators for state, however management usually controls pressure and response describes the pressure and state changes (i.e. feedback relationships).

Desirable properties for indicators (based on ICES 2005, and Rice and Rochet, 2005) Concrete: directly observable and measurable rather than abstract or only estimated indirectly Theoretical based: reflect features of ecosystems and human impact relevant to objectives and be based on well-defined and validated theoretical links Consistently understood: public understanding and technical meaning should be consistent Cost: cost-effective given limited monitoring resources Measurable: measurable using existing instruments, monitoring programmes and analytical tools, available on spatial and temporal scales needed for management, have minimum or known bias and the signal should be distinguishable from noise Context: supported by existing or time-series of data to aid interpretation of trends and to allow a realistic setting of objectives Sensitive: sensitive to changes in the state, pressure or response it is intended to measure Responsive: provide rapid and reliable feedback on the consequences of management actions Specific: respond to the properties intended to be measured rather than to other factors and/or it should be possible to disentangle the other effects from the observed response

Structure of multiple indicator frameworks Typically, potential indices are grouped into 3 or 4 categories representing: Abundance Early season catch rate, survey counts, commercial fishing area, industry perspective Production Number of recruits, mean size, average maximum size, sex ratio in catches, proportion berried, density of larvae, condition factors, disease Fishing pressure Proportion immature in catch, total trap hauls (per area ground), incidental mortality (discards or other gears), landings alternative species, exploitation rate, total mortality, proportion females in catch, proportion of catch taken during ovigerous period Ecosystem and environment - harvest control rules for fish, have tended to focus on indicators monitoring (spawning) biomass, recruitment and fishing mortality, although environmental linkages are often more predictive for many invertebrates (Caddy, 2004) Predator abundance, prey abundance, temperature indices, wind/current flows

Reference points Reference points that might support management decision making include: (i) reference points for no impact, (ii) limit reference points for the values of indicators associated with serious or irreversible harm (iii) target reference points for preferred values of the indicators As indicator values include error, precautionary reference points may be needed to guarantee a high (preferably specified) probability of avoiding a limit. When indicators are used to guide management of target stocks, there is a tradition of setting reference points (FAO 1998). In other fields, reference points may not be specified and trajectories or directions may be used to guide decision making. (but I’m not sure how far!) Reference directions can guide management when the value of an indicator is unsatisfactory or close to a limit, but when a target has not or cannot be defined (Link, 2002; Trenkel and Rochet 2003; Jennings and Dulvy 2005). Cliff edge Increasing fishing impact unexploited targetprecautionary limit

An example (for shrimp, Koeller et al, 2002) Each indicator is considered under in methods, results (and brief interpretation) sections. Additional supporting information can also be presented. Traffic light colours were determined by pre-defined limits for individual indicators, with default transition boundaries of the 33 and 67 percentiles. In two cases (commercial CPUE) polarity was considered to have switched when considered with other indicators (increased aggregation & decreased survey abundance), but the TL system did not implement this.

An example (for shrimp, Koeller et al, 2002) Halliday et al. (2001) proposed that decision rules should be based on an integrated score of indicators measuring at least three characteristics: abundance, production, and fishing mortality. If the proportion of indicators triggered within a management rule determines the severity of management response some redundancy and “smoothing” should be introduced because not all individual indicators are likely to trigger simultaneously (Caddy 1999a, 1999b). In this example, the aggregate signals for abundance were green in recent years, while the production and fishing mortality signals were declining to red in This example was used for assessment and information only. Management rules were based on separate simulation modelling.

An example using fuzzy logic for an HCR (Murta & Silvert, 2002) Using a knife edged threshold can lead to ‘flip-flop’ which should be avoided (Rice,2003). For example: If Biomass Threshold the TAC=0.4 * Biomass Fuzzy set theory can be used to allocate biomass as high or low (above or below a threshold). For example if a threshold were 500t, then below 250t could be considered 0% high biomass and above 750t 100% high biomass, with membership between interpolated. Stochastic output could also be used. Now if biomass is at the threshold it is 50% high and 50% low and the TAC would be obtained by averaging, i.e. Low biomass High biomassTAC 0.5 * * 0.4 = 0.2*B = 250t Fuzzy sets could also be used to define TAC and a range of indicators of fishery performance resulting in control rules of the form If Biomass is HIGH and Sampling is GOOD and Assessment model is GOOD and … Then TAC will be LARGE The membership of TAC is then ‘defuzzified’ to give a crisp value for the TAC

References Caddy, J.F., 1999a. Deciding on precautionary management measures for a stock based on a suite of limit reference points (LRPs) as a basis for a multi-LRP harvest law. NAFO Sci. Counc. Stud. 32: 55–68. Caddy, J.F., 1999b. A short review of precautionary reference points and some proposals for their use in data-poor situations. FAO Fish. Tech. Pap. No Caddy, J.F., Current usage of fisheries indicators and reference points, and their potential application to management of fisheries for marine invertebrates. J. Fish. Aquat. Sci. 61: 1307–1324. FAO, FAO, Precautionary approach to fisheries. Part I: Guidelines on the precautionary approach to capture fisheries and species introductions. FAO Fish. Tech. Pap. 350(1), FAO, Rome, 52 pp. Reproduced with minor editing as FAO Technical Guidelines for Responsible Fisheries. No. 2. FAO, A short review of precautionary reference points and some proposals for their use in data-poor situations. FAO Fisheries Technical Paper No. 379, 30 pp. Fulton, E.A., Smith, A.D.M., Webb, H. and Slater, J., 2004a. Ecological indicators for the impacts of fishing on non-target species, communities and ecosystems: review of potential indicators. Australian Fisheries Management Authority Final Research Report No. R99/1546, 116 pp.

References Fulton, E.A., Fuller, M., Smith, A.D.M. and Punt, A., 2004b. Ecological indicators of the ecosystem effects of fishing: final report. Australian Fisheries Management Authority Final Research Report No. R99/1546, 239 pp. Garcia, S.M., Staples, D.J. and Chesson, J., The FAO guidelines for the development and use of indicators of sustainable development of marine capture fisheries and an Australian example of their application. Ocean and Coastal Management 43, 537–556. Halliday, R.G., Fanning, L.P., and Mohn, R.K Use of the traffic light method in fishery management planning. Can. Sci. Advisory Secretariat Res. Doc. No. 2001/108. ICES (2005) Guidance on the application of the ecosystem approach to management of human activities in the European marine environment. ICES Co- operative Research Report No. 273, 22 pp. Jennings S., 2005, Indicators to support an ecosystem approach to fisheries. Fish Fish. 6, 212–232. Jennings, S. and Dulvy, N.K. (2005) Reference points and reference directions for size-based indicators of community structure. ICES Journal of Marine Science 62, 397– 404.

References Koeller, P.A., Cover, M. & King, M., A new traffic light assessment for the Eastern Scotian Shelf Shrimp Fishery in Canadian Science Advisory Secretariat, pp. Link, J.S. (2002) Ecological considerations in fisheries management: when does it matter? Fisheries 27, 10–17. Murta, A.G. & Silvert, W., A framework to put in practice a precautionary approach to fisheries assessment based on fuzzy set theory. ICES CM 2002/ACFM:10. WD. Rice, J.C. (2000) Evaluating fishery impacts using metrics of community structure. ICES Journal of Marine Science 57, 682–688. Rice, J.C. (2003) Environmental health indicators. Ocean and Coastal Management 46, 235–259. Rice, J.C. and Rochet, M.-J. (2005) A framework for selecting a suite of indicators for fisheries management. ICES Journal of Marine Science 62, 516–527.

References Rochet, M.-J. and Trenkel, V.M. (2003) Which community indicators can measure the impact of fishing? a review and proposals. Canadian Journal of Fisheries and Aquatic Science 60, 86–99. Trenkel, V.M. and Rochet, M.-J. (2003) Performance of indicators derived from abundance estimates for detecting the impact of fishing on a fish community. Canadian Journal of Fisheries and Aquatic Science 60, 67–85.