First Stars, Quasars, and the Epoch of Reionization Jordi Miralda Escudé Institut de Ciències de l’Espai (IEEC-CSIC, ICREA), Barcelona. Instituto de Astrofísica.

Slides:



Advertisements
Similar presentations
The Intergalactic Medium at High Redshifts Steve Furlanetto Yale University September 25, 2007 Steve Furlanetto Yale University September 25, 2007.
Advertisements

Star Formation Why is the sunset red? The stuff between the stars
Metals at Highish Redshift And Large Scale Structures From DLAs to Underdense Regions Patrick Petitjean Institut d’Astrophysique de Paris B. Aracil R.
Probing the End of Reionization with High-redshift Quasars Xiaohui Fan University of Arizona Mar 18, 2005, Shanghai Collaborators: Becker, Gunn, Lupton,
Elements of observational cosmology Integalactic medium:  in clusters  between clusters.
The Highest-Redshift Quasars and the End of Cosmic Dark Ages Xiaohui Fan Collaborators: Strauss,Schneider,Richards, Hennawi,Gunn,Becker,White,Rix,Pentericci,
21cm Lines and Dark Ages Naoshi Sugiyama Department of Physics and Astrophysics Nagoya University Furlanetto & Briggs astro-ph/ , Zaldarriaga et.
ESO Recent Results on Reionization Chris Carilli (NRAO) Dakota/Berkeley,August 2011 CO intensity mapping during reionization: signal in 3 easy steps Recent.
End of Cosmic Dark Ages: Observational Probes of Reionization History Xiaohui Fan University of Arizona New Views Conference, Dec 12, 2005 Collaborators:
ESO Recent Results on Reionization Chris Carilli (NRAO) LANL Cosmology School, July 2011 Review: constraints on IGM during reionization  CMB large scale.
Digging into the past: Galaxies at redshift z=10 Ioana Duţan.
Cosmological Reionization Nick Gnedin. Co-starring Gayler Harford Katharina Kohler Peter Shaver Mike Shull Massimo Ricotti.
NEUTRAL HYDROGEN Frank Briggs RSAA and ATNF z = 8 z = 0.
A hot topic: the 21cm line II Benedetta Ciardi MPA.
The Dark Age… before the stars, beyond the galaxies…
A New Constraint on the Intergalactic HeII Fraction at z~3 Matt McQuinn Einstein Fellows Symposium.
© 2010 Pearson Education, Inc. Chapter 21 Galaxy Evolution.
Primeval Starbursting Galaxies: Presentation of “Lyman-Break Galaxies” by Mauro Giavalisco Jean P. Walker Rutgers University.
Cosmology with the 21 cm Transition Steve Furlanetto Yale University September 25, 2006 Steve Furlanetto Yale University September 25, 2006.
Recycling the Intergalactic Medium
Simona Gallerani Constraining cosmic reionization models with QSOs, GRBs and LAEs observational data In collaboration with: A. Ferrara, X. Fan, T. Choudhury,
Ultraviolet Pumping of the 21-cm Line in the High Redshift Universe Leonid Chuzhoy University of Texas at Austin Collaborators: Marcelo Alvarez (Stanford),
Large Scale Simulations of Reionization Garrelt Mellema Stockholm Observatory Collaborators: Ilian Iliev, Paul Shapiro, Marcelo Alvarez, Ue-Li Pen, Hugh.
Inflation, Expansion, Acceleration Two observed properties of the Universe, homogeneity and isotropy, constitute the Cosmological Principle Manifest in.
Escape Fraction from Early Galaxies Elizabeth Fernandez University of Colorado, Boulder.
Moscow cm Cosmology Collaborators: Collaborators: Rennan Barkana, Stuart Wyithe, Matias Zaldarriaga Avi Loeb Harvard University.
Galaxy Formation and Evolution Chris Brook Modulo 15 Room 509
Copyright © 2010 Pearson Education, Inc. Life Cycle of the Stars.
Gravitational Waves from Massive Black-Hole Binaries Stuart Wyithe (U. Melb) NGC 6420.
The 21cm signature of the First Stars Xuelei Chen 陳學雷 National Astronomical Observatory of China Xuelei Chen 陳學雷 National Astronomical Observatory of China.
Sources of Reionization Jordi Miralda Escudé Institut de Ciències de l’Espai (IEEC-CSIC, ICREA), Barcelona. Beijing,
Nick Gnedin (Once More About Reionization)
Andrea Ferrara SISSA/International School for Advanced Studies, Trieste Cosmic Dawn and IGM Reionization.
Low Frequency Background and Cosmology Xuelei Chen National Astronomical Observatories Kashigar, September 10th 2005.
© 2010 Pearson Education, Inc. Chapter 21 Galaxy Evolution.
The Detectability of Lyα Emission from Galaxies during the Epoch of Reionization Dijkstra, Mesinger, Wyithe. JC Alex Fry.
Radiation backgrounds from the first sources and the redshifted 21 cm line Jonathan Pritchard (Caltech) Collaborators: Steve Furlanetto (Yale) Marc Kamionkowski.
Renaissance: Formation of the first light sources in the Universe after the Dark Ages Justin Vandenbroucke, UC Berkeley Physics 290H, February 12, 2008.
The impact of He II reionisation on the H I Ly-  forest Jamie Bolton Peng Oh (UCSB), Steve Furlanetto (UCLA)
The Distributions of Baryons in the Universe and the Warm Hot Intergalactic Medium Baryonic budget at z=0 Overall thermal timeline of baryons from z=1000.
Reionisation and the cross-correlation between the CMB and the 21-cm line fluctuations Hiroyuki Tashiro IAS, ORSAY 43rd Rencontres de Moriond La Thuile,
Complete Ionisation of the Neutral Gas in the Hosts of High Redshift AGN As Traced Through HI and MgII Absorption.
Galaxy Formation: Simple or Not? The Cosmic Dark Age Telescope: 6.5 m Infrared Optimized Next Generation Space Telescope to Launch in 2013 (+ …. Years)
Line emission by the first star formation Hiromi Mizusawa(Niigata University) Collaborators Ryoichi Nishi (Niigata University) Kazuyuki Omukai (NAOJ) Formation.
Simulations of Lyα emission: fluorescence, cooling, galaxies Jordi Miralda Escudé ICREA University of Barcelona, Catalonia Berkeley, Collaborators:
The Growth of the Stellar Seeds of Supermassive Black Holes Jarrett Johnson (LANL, MPE) with Bhaskar Agarwal (MPE), Claudio Dalla Vecchia (MPE), Fabrice.
Star Formation Why is the sunset red? The stuff between the stars
STScI, Feb. 27, Exploring Early Structure Formation with a Very Large Space Telecope Avi Loeb Harvard University Avi Loeb Harvard University.
From Avi Loeb reionization. Quest to the Highest Redshift.
Probing the Reionization Epoch in the GMT Era Xiaohui Fan (University of Arizona) Seoul/GMT Meeting Oct 5, 2010.
Mark Dijkstra, PSU, June 2010 Seeing Through the Trough: Detecting Lyman Alpha from Early Generations of Galaxies ‘ Mark Dijkstra (ITC, Harvard) based.
Lecture 8 Optical depth.
Probing the First Star Formation by 21cm line Kazuyuki Omukai (Kyoto U.)
The Twilight Zone of Reionization Steve Furlanetto Yale University March 13, 2006 Steve Furlanetto Yale University March 13, 2006 Collaborators: F. Briggs,
Lyman Alpha Spheres from the First Stars observed in 21 cm Xuelei Chen (Beijing) Jordi Miralda Escudé (IEEC, Barcelona).
Big Bang f(HI) ~ 0 f(HI) ~ 1 f(HI) ~ History of Baryons (mostly hydrogen) Redshift Recombination Reionization z = 1000 (0.4Myr) z = 0 (13.6Gyr) z.
Radiative Transfer Simulations The Proximity Effect of LBGs: Antonella Maselli, OAArcetri, Firenze, Italy Collaborators: A.Ferrara, M. Bruscoli, S. Marri.
The Dark Age and Cosmology Xuelei Chen ( 陈学雷 ) National Astronomical Observarories of China The 2nd Sino-French Workshop on the Dark Universe, Aug 31st.
Chapter 21 Galaxy Evolution Looking Back Through Time Our goals for learning How do we observe the life histories of galaxies? How did galaxies.
KASI Galaxy Evolution Journal Club A Massive Protocluster of Galaxies at a Redshift of z ~ P. L. Capak et al. 2011, Nature, in press (arXive: )
The distant Universe and something about gravitational waves.
First Stars and Reionization Andrea Ferrara SISSA/International School for Advanced Studies Trieste, Italy Five Answers for Five Questions.
Lyα Forest Simulation and BAO Detection Lin Qiufan Apr.2 nd, 2015.
The cross-correlation between CMB and 21-cm fluctuations during the epoch of reionization Hiroyuki Tashiro N. Aghanim (IAS, Paris-sud Univ.) M. Langer.
Cosmological Structure with the Lyman Alpha Forest. Jordi Miralda Escudé ICREA, Institut de Ciències del Cosmos University of Barcelona, Catalonia Edinburgh,
High Redshift QUASAR Spectra as Probe of Reionization of IGM.
Reionization of the Universe MinGyu Kim
Martin Haehnelt, Matteo Viel, Volker Springel
Probing Reionization with Lyman Alpha Emitters Pratika Dayal
Constraint on Cosmic Reionization from High-z QSO Spectra
Presentation transcript:

First Stars, Quasars, and the Epoch of Reionization Jordi Miralda Escudé Institut de Ciències de l’Espai (IEEC-CSIC, ICREA), Barcelona. Instituto de Astrofísica de Canarias,

History of recombination and reionization At redshift z ≈ 1000, hydrogen atoms were formed in a uniform medium at T ≈ 3000 K in equilibrium with the CMB radiation. Reionization starts with the first stars at z ≈ 20, and ends at z ≈ 6 with the overlap of HII regions created by luminous sources as increasingly massive halos collapse and form stars and quasars.

Observational Probes to Reionization Lyα forest, Gunn-Peterson trough –Reionization ends at z ~ 6.5 Lyα-emission galaxy surveys CMB optical depth and polarization 21 cm emission and absorption by the atomic intergalactic medium.

Quasar Lyα absorption spectra

The appearance of the Gunn-Peterson trough marks the end of reionization Fan et al. 2006

Inferred emission of ionizing photons in the post-overlap phase Lyα forest opacity yields intensity of ionizing background (photon density). Mean free path is deduced from observed Lyman limit systems. Emissivity is the ratio of photon density over mean free path. Result: only about 1 ionizing photon per baryon and per Hubble time are being emitted at z ≈ 6. Reionization is photon-starved: not many recombinations take place, and it develops over an extended epoch ( Miralda-Escudé 2003; Bolton & Haehnelt 2007)

Evidence for a rapid decline in the intensity at z > 6 suggests we have reached the end of reionization at the highest redshift quasars observed. Fan et al. 2006

The damped wing of the Gunn- Peterson trough indicates that a source is being seen behind atomic intergalactic medium We may observe this on the spectra of a gamma-ray burst optical afterglow. We may also detect this effect in suppressing the Lyman alpha emission line of star- forming galaxies. The large- scale distribution of Lya emitting galaxies during the reionization epoch might then be modulated by the structure of cosmological HII regions. Dawson et al. 2004

McQuinn et al The Clustering of Lyα emitters increases owing to a patchy reionization structure

The Thomson optical depth to the CMB depends on the whole history of reionization Up to z=6: We expect more optical depth to be added from the era of partial ionization of the universe The optical depth can be measured from the temperature and polarization fluctuations introduced in the CMB. –WMAP measurement: (consistent with extended reionization epoch over 6 < z < 20) Also, small-scale polarization on the CMB is proportional to the electron column density along each line of sight.

21 cm emission 21 cm emission on the CMB: The spin temperature must be coupled to the kinetic temperature T k to make HI observable in 21cm, either collisionally or through Lyman alpha photons (e.g., Madau, Meiksin, & Rees 1997). Initially, T k < T CMB, HI is seen in absorption. Then, lyα photons from stars increase T k -T s coupling. Later, X-rays heat the kinetic temperature and HI is seen in emission. The structure of the atomic and ionized regions can be probed through this 21 cm emission.

Evolution of kinetic temperature Typical X-ray emission of local starbursts: 1 keV per baryon. Hard X-rays ( > 1keV) heat the medium homogeneously; soft X-rays (such as the photospheric emission from metal-free stars) heat inhomogeneously. Early emission of hard X- rays depends on the presence of massive close binaries among the first stars.

Reionization was started by the first stars in the universe Cooling of gas first took place from molecular hydrogen, at z~30 in halos of mass ~ 10 6 M sun. Gas cools only to ~ 200 K. Accretion rate ~ c s 3 /G Massive (M~100 M Sun ), metal-free stars were made. The most metal-poor stars show independent evidence that most first stars were massive (e.g., Tumlinson 2007).

What is a first star? All metal-free stars? Stars forming from matter that has never been in other stars. Another possible definition: a star forming at a place and time where no light from another star has yet reached. –For CDMΛ model: first stars form at z ~ 40 from 6-sigma fluctuations. Or: a star forming at a place and time where no light from other stars is substantially affecting any of its observable properties. How can we observe a first star? Supernovae? Gamma-ray bursts? 21 cm emission/absorption on the CMB:

What happens around one metal-free star? Lyα photons couple the spin and kinetic temperatures out to a radius much larger than the HII region. X-rays from the stellar photosphere heat the medium. X-ray ionizations also produce injected Lyα photons, which turn out to dominate for the surface temperatures of metal-free stars. These yield a dominant absorption signal from a ``Lyα sphere’’ around a metal-free star.

Kinetic temperature is greatly heated just beyond the HII region, but further out it has been adiabatically cooled. 21cm absorption strongly dominates over the inner emission core. Temperature and 21cm profiles

Detectability of single Lyα spheres Angular size: θ ~ 10” (20 kpc at z=30) – Required baseline: 100 km (at z=30) –Signal temperature: δT ≈ 200 mK –Synchrotron background temperature: T b ≈4000 K (z=30) for t=1 year We need a large array of telescopes. It may be better to look for clusters of Lyα spheres on larger angular scales, or for a global signal.

Conclusions The Gunn-Peterson trough in quasar spectra informs us about how reionization ended. Reionization was photon-starved, and a long epoch of partial ionization existed before reionization ended, contributing to the CMB Thomson optical depth. Damped intergalactic absorption and 21cm emission can probe the evolution of the intergalactic medium during the epoch of partial ionization. The Lyα sphere of a metal-free star produces a 21cm absorption signal which is an unmistakable signature of a first star.

Typical history of reionization, contributed by metal-free stars, and galaxies (Rozas et al. 2006)

Lyα background intensity The coupling parameter y α gets close to unity at z ≈ 25 everywhere because of the light background from all metal-free stars, so Lyα spheres lose their contrast. In addition, global temperature starts rising at z ≈ 25 due to X-rays, so absorption weakens, eventually turning to emission. 21 cm absorption must be searched at 30 – 40 MHz

Properties of first metal-free stars Central gas cools only to T ≈ 200 K. Molecular hydrogen lines can be collisionally deexcited at density n > 10 4 cm -3, making the cooling rate independent of density and inhibiting fragmentation. Jeans mass ≈ 300 M sun. Accretion rate ≈ c s 3 /G ≈ M sun /yr The first metal-free stars were massive, with L ≈ L Edd and T ≈ 10 5 K (Abel etal 2002, Bromm etal 2002, Schaerer 2002). Their lifetime is ~ 3 million years.

A question you can wonder about when you are swimming in the sea this summer. Where all of the hydrogen atoms around you ionized at some stage after they first formed at z ≈ 1000, or were some of them never ionized?

First ionized regions Each metal-free star can produce about 10 5 ionizing photons per baryon it contains, creating an HII region of ~ 10 7 M sun of gas, of physical radius ~ 1 kpc at z=30. Probably only one metal-free star forms per halo. Star formation occurring after the HII region recombines and merges is probably from metal enriched gas.

Heating due to the scattering of Lyα photons itself is negligible Heating rate: Injected photons: Continuum photons:

Lyα spheres at z≈30 are strongly biased Average number of neighboring star-forming halos

History of recombination and reionization The fraction of ionized gas in the universe gradually increased as more massive halos collapsed, forming galaxies and the first quasars. Initially, most photons escaping from the dense vicinity of sources were used to ionize the diffuse intergalactic matter. Reionization ends when all the low-density medium is ionized. At this time, most ionizing photons are absorbed in dense, self-shielded clumps (Lyman limit systems). An abrupt increase of the mean free path and intensity of the ionizing background is expected at the end of reionization.