Foundations in Microbiology Seventh Edition Lecture PowerPoint to accompany Foundations in Microbiology Seventh Edition Talaro Chapter 20 The Gram-Negative Bacilli of Medical Importance Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
20.1 Aerobic Gram-Negative Nonenteric Bacilli Large, diverse group of non-spore-forming bacteria Wide range of habitats – large intestines (enteric), zoonotic, respiratory, soil, water Most are not medically important; some are true pathogens, some are opportunists All have a lipopolysaccharide outer membrane of cell wall – endotoxin
Aerobic Gram-Negative Nonenteric Bacilli Pseudomonas and Burkholderia – an opportunistic pathogen Brucella and Francisella – zoonotic pathogens Bordetella and Legionella – mainly human pathogens
Pseudomonas: The Pseudomonads Small gram-negative rods with a single polar flagellum Free living Primarily in soil, sea water, and fresh water; also colonize plants and animals Important decomposers and bioremediators Frequent contaminants in homes and clinical settings Use aerobic respiration; do not ferment carbohydrates Produce oxidase and catalase Many produce water soluble pigments
Figure 20.1 Pseudomonas aeruginosa
Pseudomonas Aeruginosa Common inhabitant of soil and water Intestinal resident in 10% normal people Resistant to soaps, dyes, quaternary ammonium disinfectants, drugs, drying Frequent contaminant of ventilators, IV solutions, anesthesia equipment Opportunistic pathogen
Figure 20.2 Skin rash from Pseudomonas
Pseudomonas Aeruginosa Common cause of nosocomial infections in hosts with burns, neoplastic disease, cystic fibrosis Complications include pneumonia, UTI, abscesses, otitis, and corneal disease Endocarditis, meningitis, bronchopneumonia Grapelike odor Greenish-blue pigment (pyocyanin) Multidrug resistant Cephalosporins, aminoglycosides, carbenicillin, polymixin, quinolones, and monobactams
Figure 20.3 Pseudomonas (left) and Staphylococcus (right)
20.2 Related Gram-Negative Aerobic Rods Genera Burkholderia, Acinetobacter, Stenotrophomonas Similar to pseudomonads Wide variety of habitats in soil, water, and related environments Obligate aerobes; do not ferment sugars Motile, oxidase positive Opportunistic
Burkholderia Burkholderia cepacia – active in biodegradation of a variety of substances; opportunistic agent in respiratory tract, urinary tract, and occasionally skin infections; drug resistant B. pseudomallei – generally acquired through penetrating injury or inhalation from environmental reservoir; wound infections, bronchitis and pneumonia, septicemia
Acinetobacter and Stenotrophomonas Acinetobacter baumanii – nosocomial and community acquired infections; wounds, lungs, urinary tract, burns, blood; extremely resistant – treatment with combination antimicrobials Stenotrophomonas maltophilia – forms biofilms; contaminant of disinfectants dialysis equipment, respiratory equipment, water dispensers, and catheters; clinical isolate in respiratory soft tissue, blood, CSF; high resistance to multidrugs
Brucella and Brucellosis Tiny gram-negative coccobacilli 2 species: Brucella abortus (cattle) Brucella suis (pigs) Brucellosis, malta fever, undulant fever, and Bang disease – a zoonosis transmitted to humans from infected animals Fluctuating pattern of fever – weeks to a year Combination of tetracycline and rifampin or streptomycin Animal vaccine available Potential bioweapon
Figure 20.5 Agglutination titer test for brucellosis
Francisella Tularensis and Tularemia Causes tularemia, a zoonotic disease of mammals endemic to the northern hemisphere, particularly rabbits Transmitted by contact with infected animals, water and dust or bites by vectors Headache, backache, fever, chills, malaise, and weakness 10% death rate in systemic and pulmonic forms Intracellular persistence can lead to relapse Gentamicin or tetracycline Attenuated vaccine Potential bioterrorism agent
Bordetella Pertussis Minute, encapsulated coccobacillus Causes pertussis or whooping cough, a communicable childhood affliction Acute respiratory syndrome Often severe, life-threatening complications in babies Reservoir – apparently healthy carriers Transmission by direct contact or inhalation of aerosols
Bordetella Pertussis Virulence factors Receptors that recognize and bind to ciliated respiratory epithelial cells Toxins that destroy and dislodge ciliated cells Loss of ciliary mechanism leads to buildup of mucus and blockage of the airways Vaccine – DTaP – acellular vaccine contains toxoid and other Ags
Figure 20.7 Prevalence of pertussis in the United States
Alcaligenes Live primarily in soil and water May become normal flora A. faecalis – most common clinical species Isolated from feces, sputum, and urine Occasionally associated with opportunistic infections – pneumonia, septicemia, and meningitis
Legionella Pneumophila and Legionellosis Widely distributed in water Live in close association with amoebas 1976 epidemic of pneumonia afflicted 200 American Legion members attending a convention in Philadelphia and killed 29 Legionnaires disease and Pontiac fever Prevalent in males over 50 Nosocomial disease in elderly patients Fever, cough, diarrhea, abdominal pain, pneumonia fatality rate of 3-30% Azithromycin
Figure 20.8 Appearance of Legionella pneumophila
20.3 Enterobacteriaceae Family Enterics Large family of small, non-spore-forming gram-negative rods Many members inhabit soil, water, decaying matter, and are common occupants of large bowel of animals including humans Most frequent cause of diarrhea through enterotoxins Enterics, along with Pseudomonas sp., account for almost 50% of nosocomial infections
Figure 20.9 Bacteria that account for the majority of hospital infections
Facultative anaerobes, grow best in air All ferment glucose, reduce nitrates to nitrites, oxidase negative, and catalase positive Divided into coliforms (lactose fermenters) and non-coliforms (non-lactose fermenters) Enrichment, selective and differential media utilized for screening samples for pathogens
Figure 20.10 Biochemical traits for separating enteric genera
Figure 20.11 Isolation media for enterics
Figure 20.12 BBL Enterotube II, rapid biochemical testing of enterics
Antigenic Structures and Virulence Factors Complex surface antigens contribute to pathogenicity and trigger immune response: H – flagellar Ag K – capsule and/or fimbrial Ag O – somatic or cell wall Ag – all have Endotoxin Exotoxins
Figure 20.13 Antigenic structures in gram-negative enteric rods
20.4 Coliform Organisms and Diseases
Escherichia Coli: The Most Prevalent Enteric Bacillus Most common aerobic and non-fastidious bacterium in gut 150 strains Some have developed virulence through plasmid transfer, others are opportunists
Pathogenic Strains of E. Coli Enterotoxigenic E. coli causes severe diarrhea due to heat-labile toxin and heat-stable toxin – stimulate secretion and fluid loss; also has fimbriae Enteroinvasive E. coli causes inflammatory disease of the large intestine Enteropathogenic E. coli linked to wasting form infantile diarrhea Enterohemorrhagic E. coli, O157:H7 strain, causes hemorrhagic syndrome and kidney damage
Escherichia coli Pathogenic strains frequent agents of infantile diarrhea – greatest cause of mortality among babies Causes ~70% of traveler’s diarrhea Causes 50-80% UTI Coliform count – indicator of fecal contamination in water
Figure 20.14 Rapid identification of E. coli O157:H7
Other Coliforms Clinically important mainly as opportunists Klebsiella pneumoniae – normal inhabitant of respiratory tract, has large capsule, cause of nosocomial pneumonia, meningitis, bacteremia, wound infections, and UTIs Enterobacter sp. – UTIs, surgical wounds Citrobacter sp. – opportunistic UTIs and bacteremia Serratia marcescens – produces a red pigment; causes pneumonia, burn and wound infections, septicemia and meningitis
Figure 20.15 A capsule stain of Klebsiella pneumoniae
Figure 20.16 Serratia marcescens
20.5 Noncoliform Lactose-Negative Enterics Proteus, Morganella, Providencia Salmonella and Shigella
Opportunists: Proteus and Its Relatives Proteus, Morganella, Providencia – ordinarily harmless saprobes in soil, manure, sewage, polluted water, commensals of humans and animals Proteus sp. – swarm on surface of moist agar in a concentric pattern Involved in UTI, wound infections, pneumonia, septicemia, and infant diarrhea Morganella morganii and Providencia sp. involved in similar infections All demonstrate resistance to several antimicrobials
Figure 20.17 Wavelike, swarming pattern of Proteus vulgaris
Salmonella and Shigella Well-developed virulence factors, primary pathogens, not normal human flora Salmonelloses and Shigelloses Some gastrointestinal involvement and diarrhea but often affect other systems
Typhoid Fever and Other Salmonelloses Salmonella typhi – most serious pathogen of the genus; cause of typhoid fever; human host S. cholerae-suis – zoonosis of swine S. enteritidis – includes 1,700 different serotypes based on variation on O, H, and Vi Flagellated; survive outside the host Resistant to chemicals – bile and dyes
Typhoid Fever Bacillus enters with ingestion of fecally contaminated food or water; occasionally spread by close personal contact; ID 1,000-10,000 cells Asymptomatic carriers; some chronic carriers shed bacilli from gallbladder Bacilli adhere to small intestine, cause invasive diarrhea that leads to septicemia Treat chronic infections with chloramphenicol or sulfatrimethoprim 2 vaccines for temporary protection
Figure 20.18 Prevalence of salmonelloses
Figure 20.19 The phases of typhoid fever
Animal Salmonelloses Salmonelloses other than typhoid fever are called enteric fevers, Salmonella food poisoning, and gastroenteritis Usually less severe than typhoid fever but more prevalent Caused by one of many serotypes of Salmonella enteritidis; all zoonotic in origin but humans can become carriers Cattle, poultry, rodents, reptiles, animal, and dairy products Fomites contaminated with animal intestinal flora
Shigella and Bacillary Dysentery Shigellosis – incapacitating dysentery S. dysenteriae, S. sonnei, S. flexneri, and S. boydii Human parasites Invades villus of large intestine, does not perforate intestine or invade blood Enters Peyer’s patches instigate inflammatory response; endotoxin and exotoxins Treatment – fluid replacement and ciprofloxacin and sulfatrimethoprim
Figure 20.20 The appearance of the large intestinal mucosa in Shigella
The Enteric Yersinia Pathogens Yersinia enterocolitica – domestic and wild animals, fish, fruits, vegetables, and water Bacteria enter small intestinal mucosa, some enter lymphatic and survive in phagocytes; inflammation of ileum can mimic appendicitis Y. pseudotuberculosis – infection similar to Y. enterocolitica, more lymph node inflammation
Nonenteric Yersinia Pestis and Plague Tiny, gram-negative rod, unusual bipolar staining and capsules Virulence factors – capsular and envelope proteins protect against phagocytosis and foster intracellular growth Coagulase, endotoxin, murine toxin
Figure 20.21 Gram-stain of Yersinia pestis
Yersinia Pestis Humans develop plague through contact with wild animals (sylvatic plague) or domestic or semidomestic animals (urban plague) or infected humans Found in 200 species of mammals – rodents, without causing disease Flea vectors – bacteria replicates in gut, coagulase causes blood clotting that blocks the esophagus; flea becomes ravenous
Figure 20.22 Infection cycle of Yersinia pestis
Pathology of Plague ID 3-50 bacilli Bubonic – bacillus multiplies in flea bite, enters lymph, causes necrosis and swelling called a bubo in groin or axilla Septicemic – progression to massive bacterial growth; virulence factors cause intravascular coagulation subcutaneous hemorrhage and purpura – black plague Pneumonic – infection localized to lungs, highly contagious; fatal without treatment
Figure 20.23 The bubo, classic sign of bubonic plague
Diagnosis depends on history, symptoms, and lab findings from aspiration of buboes Treatment: streptomycin, tetracycline, or chloramphenicol Killed or attenuated vaccine available Prevention by quarantine and control of rodent population in human habitats
Oxidase-Positive Nonenteric Pathogens Pasteurella multocida Haemophilus influenzae H. aegyptius H. ducreyi H. parainfluenzae H. aphrophilus
Pasteurella Multocida Zoonotic genus; normal flora in animals Opportunistic infections Animal bites or scratches cause local abscess that can spread to joints, bones, and lymph nodes Immunocompromised are at risk for septicemia and complications Treatment: penicillin and tetracycline
Haemophilus Tiny gram-negative pleomorphic rods Fastidious, sensitive to drying, temperature extremes, and disinfectants None can grow on blood agar without special techniques – chocolate agar Require hemin, NAD, or NADP Some species are normal colonists of upper respiratory tract or vagina (H. parainfluenzae, H. ducreyi) Others are virulent species responsible for childhood meningitis, and chancroid
Haemophilus H. influenzae – acute bacterial meningitis, epiglottitis, otitis media, sinusitis, pneumonia, and bronchitis Subunit vaccine Hib H. aegyptius – conjunctivitis, pink eye H. ducreyi – chancroid STD H. parainfluenzae and H. aphrophilus – normal oral and nasopharyngeal flora; infective endocarditis
Figure 20.25 Meningitis in the United States
Figure 20.26 Acute conjunctivitis