1 IETF 88 IETF88 Vancouver Congestion control for video and priority drops Background for draft-lai-tsvwg-normalizer-02.txt Toerless Eckert,

Slides:



Advertisements
Similar presentations
Congestion Control and Fairness Models Nick Feamster CS 4251 Computer Networking II Spring 2008.
Advertisements

Congestion Control and Fairness Models Nick Feamster CS 4251 Computer Networking II Spring 2008.
Computer Networking Lecture 20 – Queue Management and QoS.
CSIT560 Internet Infrastructure: Switches and Routers Active Queue Management Presented By: Gary Po, Henry Hui and Kenny Chong.
Top-Down Network Design Chapter Thirteen Optimizing Your Network Design Copyright 2010 Cisco Press & Priscilla Oppenheimer.
Playback-buffer Equalization For Streaming Media Using Stateless Transport Prioritization By Wai-tian Tan, Weidong Cui and John G. Apostolopoulos Presented.
Confused, Timid, and Unstable: Picking a Video Streaming Rate is Hard Published in 2012 ACM’s Internet Measurement Conference (IMC) Five students from.
Receiver-driven Layered Multicast S. McCanne, V. Jacobsen and M. Vetterli University of Calif, Berkeley and Lawrence Berkeley National Laboratory SIGCOMM.
Congestion Control An Overview -Jyothi Guntaka. Congestion  What is congestion ?  The aggregate demand for network resources exceeds the available capacity.
XCP: Congestion Control for High Bandwidth-Delay Product Network Dina Katabi, Mark Handley and Charlie Rohrs Presented by Ao-Jan Su.
Receiver-driven Layered Multicast S. McCanne, V. Jacobsen and M. Vetterli SIGCOMM 1996.
Network Congestion Gabriel Nell UC Berkeley. Outline Background: what is congestion? Congestion control – End-to-end – Router-based Economic insights.
Streaming Video over the Internet: Approaches and Directions Dapeng Wu, Yiwei Thomas Hou et al. Presented by: Abhishek Gupta
ABE: Providing a Low Delay within Best Effort P. Hurley, M. Kara, J. Le Boudec, and P. Thiran ICA, Swiss Federal Institute of Technology, Lausanne, Switzerland.
1 Sangeun Han, Athina Markopoulou Transmitting Scalable Video over a DiffServ network EE368C Project Proposal Sangeun Han, Athina Markopoulou 1/30/01.
CAC and Scheduling Schemes for Real-time Video Applications in IEEE Networks Ou Yang UR 10/11/2006.
A Layered Hybrid ARQ Scheme for Scalable Video Multicast over Wireless Networks Zhengye Liu, Joint work with Zhenyu Wu.
End-to-End TCP-Friendly Streaming Protocol and Bit Allocation for Scalable Video Over Wireless Internet Fan Yang, Qian Zhang, Wenwu Zhu, and Ya-Qin Zhang.
A Real-Time Video Multicast Architecture for Assured Forwarding Services Ashraf Matrawy, Ioannis Lambadaris IEEE TRANSACTIONS ON MULTIMEDIA, AUGUST 2005.
Adaptive Delay Aware Error Control for Internet telephony Catherine Boutremans Jean-Yves Le Boudec IP Telephony Workshop’2001 Institute for computer Communication.
A novel switching paradigm for buffer-less WDM networks Myungsik Yoo and Chunming Qiao EE and CSE Departments University at Buffalo (SUNY)
Computer Networking Lecture 17 – Queue Management As usual: Thanks to Srini Seshan and Dave Anderson.
Medium Start in TCP-Friendly Rate Control Protocol CS 217 Class Project Spring 04 Peter Leong & Michael Welch.
Receiver-driven Layered Multicast Paper by- Steven McCanne, Van Jacobson and Martin Vetterli – ACM SIGCOMM 1996 Presented By – Manoj Sivakumar.
1 1 July 28, Absent changes to the network can we actually do something? Yes Is there work in the area of measurements that can we do to create.
Jani Pousi Supervisor: Jukka Manner Espoo,
Quality of Service (QoS)
CS640: Introduction to Computer Networks Aditya Akella Lecture 20 - Queuing and Basics of QoS.
Top-Down Network Design Chapter Thirteen Optimizing Your Network Design Oppenheimer.
Distributed Multimedia March 19, Distributed Multimedia What is Distributed Multimedia?  Large quantities of distributed data  Typically streamed.
Analysis of FEC Function for Real-Time DV Streaming Kazuhisa Matsuzono, Hitoshi Asaeda, Kazunori Sugiura, Osamu Nakamura, and Jun Murai Keio University.
RPT: Re-architecting Loss Protection for Content-Aware Networks Dongsu Han, Ashok Anand ǂ, Aditya Akella ǂ, and Srinivasan Seshan Carnegie Mellon University.
Link Scheduling & Queuing COS 461: Computer Networks
Network Instruments VoIP Analysis. VoIP Basics  What is VoIP?  Packetized voice traffic sent over an IP network  Competes with other traffic on the.
Voice Over Internet Protocol (VoIP). Basic Components of a Telephony Network.
Shivkumar Kalyanaraman Rensselaer Polytechnic Institute 1 A TCP Friendly Traffic Marker for IP Differentiated Services Feroz Azeem, Shiv Kalyanaraman,
Byte and Packet Congestion Notification draft-briscoe-tsvwg-byte-pkt-mark-01.txt draft-briscoe-tsvwg-byte-pkt-mark-01.txt Bob Briscoe, BT & UCL IETF-70.
Byte and Packet Congestion Notification draft-briscoe-tsvwg-byte-pkt-mark-00.txt draft-briscoe-tsvwg-byte-pkt-mark-00.txt Bob Briscoe, BT & UCL IETF-69.
RMCAT Application Interaction draft-zanaty-rmcat-app-interaction-01 Mo Zanaty, Varun Singh, Suhas Nandakumar, Zahed Sarker IETF 90.
© 2006 Cisco Systems, Inc. All rights reserved. Optimizing Converged Cisco Networks (ONT) Module 3: Introduction to IP QoS.
報告人:林祐沁 學生 指導教授:童曉儒 老師 March 2, Wireless Video Surveillance Server Based on CDMA1x and H.264.
Queueing and Active Queue Management Aditya Akella 02/26/2007.
Shivkumar Kalyanaraman Rensselaer Polytechnic Institute 1 Efficient Path Aggregation and Error Control for Video Streaming OMESH TICKOO, Shiv Kalyanaraman,
Opportunistic Traffic Scheduling Over Multiple Network Path Coskun Cetinkaya and Edward Knightly.
CS640: Introduction to Computer Networks Aditya Akella Lecture 20 - Queuing and Basics of QoS.
1 1 July 28, Goal of this session is too have a discussion where we learn about the relevant data to help us understand the problem and design.
Scalable Video Coding and Transport Over Broad-band wireless networks Authors: D. Wu, Y. Hou, and Y.-Q. Zhang Source: Proceedings of the IEEE, Volume:
IETF#64 – 7-11 November 2005 fecframe BOF Chair:Mark Watson Mailing List:
Towards Adaptive Congestion Management for Interactive Real- Time Communications Dirk KutscherMirja KühlewindBob Briscoe IAB/IRTF Congestion Control Workshop.
Thoughts on the Evolution of TCP in the Internet (version 2) Sally Floyd ICIR Wednesday Lunch March 17,
CSE5803 Advanced Internet Protocols and Applications (14) Introduction Developed in recent years, for low cost phone calls (long distance in particular).
CONGESTION CONTROL.
Random Early Detection (RED) Router notifies source before congestion happens - just drop the packet (TCP will timeout and adjust its window) - could make.
Chapter 11.4 END-TO-END ISSUES. Optical Internet Optical technology Protocol translates availability of gigabit bandwidth in user-perceived QoS.
Flow Control in Multimedia Communication Multimedia Systems and Standards S2 IF Telkom University.
L Subramanian*, I Stoica*, H Balakrishnan +, R Katz* *UC Berkeley, MIT + USENIX NSDI’04, 2004 Presented by Alok Rakkhit, Ionut Trestian.
The Case for Layered Codecs Stephan Wenger Alex Eleftheriadis.
Queue Management Mike Freedman COS 461: Computer Networks Lectures: MW 10-10:50am in Architecture N101
RMCAT Application Interaction draft-zanaty-rmcat-app-interaction-00 Mo Zanaty, Varun Singh, Suhas Nandakumar IETF 89.
Real-time Transport for Assured Forwarding: An Architecture for both Unicast and Multicast Applications By Ashraf Matrawy and Ioannis Lambadaris From Carleton.
Multimedia Communication Systems Techniques, Standards, and Networks Chapter 6 Multimedia Communication Across Networks.
OverQos: An Overlay based Architecture for Enhancing Internet Qos L Subramanian*, I Stoica*, H Balakrishnan +, R Katz* *UC Berkeley, MIT + USENIX NSDI’04,
Networked Multimedia Basics. Network Characteristics.
Top-Down Network Design Chapter Thirteen Optimizing Your Network Design Copyright 2010 Cisco Press & Priscilla Oppenheimer.
Queue Management Jennifer Rexford COS 461: Computer Networks
Transmitting Scalable Video over a DiffServ network
COS 461: Computer Networks
EE 122: Differentiated Services
Project proposal Multi-stream and multi-path audio transmission
Presentation transcript:

1 IETF 88 IETF88 Vancouver Congestion control for video and priority drops Background for draft-lai-tsvwg-normalizer-02.txt Toerless Eckert, I LTR P dP

2 IETF 88 draft-lai-tsvwg-normalizer-02.txt discusses key problem of larger solution Provide overview of larger solution here: Priority dropping Interest for priority dropping due to p2p video resilience work Overlap/beneft also for p2mp switched video What can the network do ? Consider how priority drops can be beneficial for CC and video quality What is missing ?

3 IETF 88 Loss of video packets during congestion happen.. and is unavoidable Today Internet traffic far from ideal congestion control Even with ideal congestion control: bad competing traffic, burst collisions,… Mitigation: Retransmission (incurs delay ~RTT) Concealment (in video layer of application, interpolation == delay) Redundancy/Protection/FEC Optimize Protection by taking video packet priority into account Loss of higher priority video packet has bigger impact on quality Streaming: I (high), P (medium), B (low), Conferencing: LTRF (high), P (medium), discardable P (low) Use unequal protection: more FEC for I/LTRF, less for P, none for B/dP BW-cost of FEC still high, efficiency limited by acceptable delay, Effectiveness limited by loss profile (bursty loss = hard to protect with low delay) Dear network, please drop only low priority video packets Avoids FEC downsides: overhead, limited effectiveness, delay

4 IETF 88 Switched MCU video conference: Sender -> switching MCU -> multiple receivers Congestion from MCU to receiver requires rate-adaptation at MCU switching MCU == no codec layer == no transrating/transcoding. Rate-adaptation via: 1.Shaping (== delay == bad) 2.Select next-best spatial encoded video from sender (eg: QCIF, CIF, 4CIF, 16CIF,…) 3.Drop frames from that encoded video to match available rate. Hierarchical temporal encoding with discardable P-frames. Dropping dP frames minimizes visual impact. Priority dropping in network can improve this: Unavoidable network drops are like the P2P use case (bad or FEC,…) Faster: low-prio dropping in network will drop low priority immediately. MCU dropped packets (“holes”) make flow more bursty == difficult for CC. Loss rate on these flows may get higher or achievable rate lower

5 IETF 88 Minimizing drops via rate-control impacts throughput Especially with bursty traffic. RT video traffic has great justification/need for burstyness Example 1: Compare delay-variation/ECN with eg: PCN PCN can achieve lower loss than delay-variation/ECN rate-control alone. PCN “Headroom” is unused bandwidth available to bursts. Example 2: Similar effects for conservative rate-control The less rate-control “probes” the limit to loss, the less loss there will be. And the less throughput. Claim 1 (intra-flow): Visual impact of loosing low-priority video packet may be lower than a reduction in overall bitrate of video flow. Claim 2 (inter flow): Aggregate quality result is better when high-prioirty packets can burst more without loss – at the expense of low-priority packets sometimes getting dropped.

6 IETF 88 Assume we have video packets marked with priority Queues in network devices can quite effectively drop low priority packets over high priority packets. Leveraging existing HW queue options: Droptail profiles / WRED Example with three priorities: high (20% bitrate of flows), normal (60% bitrate of flows), low (20% bitrate of flows) Rates are longer term average – eg: over ½ second Queue: high priority packets dropped on 100% queue length Normal priority packets dropped on 90% queue length Low priority packets dropped on 40% queue length On any loss under 10% can achieve >> 99.9% loss in only low priority packets On loss at 40%, can achieve “ideal loss” – all low priority, 20% medium priority, no high priority. Guess: the more priorities to distinguish, the less crisp the results.

7 IETF 88 Useful priority markings DSCP difficult/overloaded – if priority dropping would be useful for N existing types of traffic (realtime video, streaming video, market-data/telemetry,…) we would need at least 3 * N DSCP. For video, RTP header extension with “drop priority” would be ?ideal? RTP header extension would require onpath signaling to let routers know (eg: MALICE). Application support Mark the priority of packets Encode video to best utilize packet priorities. Optimize rate-adaptation & congestion control if priority dropping is supported. If loss in network is only in low-priority packets, application know that congestion happens at a point in network that supports it. Better/faster upspeeding less need to shape/avod bursts No protection overhead, … adjusted CC parameters (longer rate averaging) Fairness, Normalization, standard profiles ?

8 IETF 88 Unfairness with existing queuing setups: The lower the average priority in a flow, the more loss it will see vs. other flows No motivation for applications to honestly mark priority of packets Great incentive to mark packets with only high-priority draft-lai-tsvwg-normalizer-02.txt solves this problem Router analyzes distribution of priorities in flow. Remaps priorities (internally, not visible in packet) so that distirbution of priorities match a normalized profile (eg: 20% high, 60% medium, 20% low). All flows now compete fairly in the queue and see same amount of drops. Running code. But unclear if this scales to higher end routers More generic approach ? Agree on a simple standard profile 20/60/20 ? Perform normalization or filtering only on “trust” edge Exactly like for any other QoS function.

9 IETF 88 Background: some simulation results

10 IETF 88 Wrong labels: red = dP Green = P blue = LTRF ~10% dropped Measured: # of packets dropped every 0.1 second

11 IETF 88

12 IETF 88

13 IETF 88

14 IETF 88

15 IETF 88 Droptail